Abstract:
The present invention provides a method for transceiving a broadcast channel signal and/or a control channel signal in a wireless access system and devices for supporting the same. The method for receiving a physical broadcast channel (PBCH) signal in a wireless access system, according to one embodiment of the present invention, comprises steps of: receiving synchronization signals; obtaining a physical cell identifier (PCID) on the basis of the synchronization signals; calculating a subcarrier index for indicating a PBCH area on the basis of the PCID; detecting the PBCH area by carrying out blind-decoding from a subcarrier, in which a subcarrier index is shown, in the subframe; and receiving a PBCH signal which is broadcasted through the PBCH area.
Abstract:
In this disclosure, methods for pre-compensation of the phase shifting error, and apparatuses for the same are disclosed. In one example, a device performs precoding of a digital signal, while acquiring information on an error caused by a phase shifting of the precoding. Then, the device performs phase compensation on the digital signal based on the acquired information. This phase compensated-digital signal is converted to an analogue signal, and is transmitted to a receiver.
Abstract:
The present invention relates to a wireless communication system. The method whereby a terminal receives synchronizing signals in a wireless communication system supporting multi-carriers, according to one embodiment of the present invention, comprises the steps of: receiving location information on domains, from which the synchronizing signals are transmitted, among the domains resulting from the division of the whole system bandwidth into N parts along a frequency axis and into M parts along a time axis (wherein N and M are natural numbers); and receiving the synchronizing signals from the domains corresponding to the location information, wherein the respective synchronizing signals transmitted to multiple carriers can be transmitted from domains having a different frequency and/or time.
Abstract:
The present invention relates to a wireless communication system. The method whereby a terminal receives a synchronizing signal in a wireless communication system according to one embodiment of the present invention may comprise the steps of: receiving location information on a domain, from which the synchronizing signal is transmitted, among domains resulting from the division of the whole system bandwidth into N parts along a frequency axis and into M parts along a time axis (wherein N and M are natural numbers); and receiving the synchronizing signal from the domain corresponding to the location information.
Abstract:
Provided is a method and device for performing communication with a virtual terminal in a wireless communication system. A base station determines a second plurality of virtual terminals, to which downlink data is to be transmitted, among a first plurality of virtual terminals constituting an actual terminal, transmits control information for transmitting the downlink data to at least one virtual terminal of the second plurality of virtual terminals, and transmits the downlink data to the second plurality of terminals. The actual terminal may be a vehicle terminal, and each of the first plurality of virtual terminals may comprise at least one of a plurality of distributed antenna arrays installed in the vehicle terminal.
Abstract:
The present specification can provide a method by which a terminal performing communication controls a virtual terminal. The method for controlling the virtual terminal can comprise the steps of: connecting with a base station; receiving a connection re-establishment command message from the connected base station; and registering or removing the virtual terminal on the basis of the connection re-establishment command message.
Abstract:
A method by which a base station receives feedback information on beamforming in a wireless communication system, according to one embodiment of the present invention, comprises the steps of: transmitting an omni-directional beam formed uniformly in all directions, on the basis of a non-precoded first signal; transmitting a plurality of directional beams through a plurality of antenna ports on the basis of second signals precoded in different directions; and receiving feedback information from a terminal, wherein the feedback information includes a gain difference between a first directional beam among the plurality of directional beams and the omni-directional beam, and an index of a first antenna port used in transmitting the first directional beam among the plurality of antenna ports.
Abstract:
The present specification relates to a method for transmitting and receiving a signal to/from a base station by a terminal in an inter-vehicle communication system, wherein the method for transmitting a signal may comprise: a step for receiving a reference signal; a step for feeding-back channel information on the basis of the received reference signal; and a step for receiving data on the basis of the channel information, and wherein the terminal includes a plurality of distributed antenna units (DUs), and if selection of whether each of the plurality of DUs is activated is possible, the channel information may include DU index set information and channel state information (CSI).
Abstract:
Provided is a method for performing random access, the method comprising: obtaining information associated with a phase pattern vector set and information associated with a sequence set to be used during a random access process; selecting one phase pattern vector corresponding to the number of repetitive transmissions of an RACH signal, among a plurality of phase pattern vectors included in the phase pattern vector set; transmitting, to a base station, an RACH signal during a time section corresponding to the number of repetitive transmissions of an RACH signal, at a predetermined transmission point in the entire time section corresponding to the maximum number of repetitive transmissions; and receiving, from the base station, an RACH response signal indicating an estimated sequence, an estimated phase pattern vector, and an estimated transmission point.
Abstract:
A method of receiving a signal, which is received by a receiving end in a wireless communication system, is disclosed in the present specification. The method includes the steps of calculating effective Doppler spread values of reception beam combinations, wherein each reception beam combination consists of two or more reception beams among a plurality of reception beams; selecting a first reception beam combination from the reception beam combinations using the effective Doppler spread values; and receiving the signal from a transmitting end using at least one reception beam included in the selected first reception beam combination.