Abstract:
A magnetic memory element comprising a magnetic storage element having at least one magnetic layer made of a magnetic material and being vertically oriented relative to a wafer surface on which the magnetic memory element is formed, the magnetic layer having a magnetic anisotropy with its magnetization vector being magnetically coupled to at least one current line, and a magnetic sensor element for sensing the magnetization of the at least one magnetic layer of the magnetic storage element comprising at least one magnetic layer having a magnetization vector being magnetically coupled to the magnetization vector of the at least one magnetic layer of the magnetic storage element, the magnetic sensor element being conductively coupled to the at least one current line.
Abstract:
There are many inventions described and illustrated herein. In a first aspect, the present invention is directed to a memory device and technique of reading data from and writing data into memory cells of the memory device. In this regard, in one embodiment of this aspect of the invention, the memory device and technique for operating that device that minimizes, reduces and/or eliminates the debilitating affects of the charge pumping phenomenon. This embodiment of the present invention employs control signals that minimize, reduce and/or eliminate transitions of the amplitudes and/or polarities. In another embodiment, the present invention is a semiconductor memory device including a memory array comprising a plurality of semiconductor dynamic random access memory cells arranged in a matrix of rows and columns. Each semiconductor dynamic random access memory cell includes a transistor having a source region, a drain region, a electrically floating body region disposed between and adjacent to the source region and the drain region, and a gate spaced apart from, and capacitively coupled to, the body region. Each transistor includes a first state representative of a first charge in the body region, and a second data state representative of a second charge in the body region. Further, each row of semiconductor dynamic random access memory cells includes an associated source line which is connected to only the semiconductor dynamic random access memory cells of the associated row.
Abstract:
A random access memory cell and fabrication method therefor are disclosed. The random access memory cell includes a first and a second pull-down transistor cross-coupled such that a control terminal of the first pull-down transistor is connected to a conduction terminal of the second pull-down transistors, and the control terminal of the second pull-down transistor is connected to the conduction terminal of the first pull-down transistor. A first pass gate transistor is coupled between the conduction terminal of the first transistor and a first bit line of a bit line pair, and a second pass gate transistor is coupled between the conduction terminal of the second transistor and a second bit line of the bit line pair. The threshold voltage of the first and second pass gate transistors is such that a subthreshold current is provided to the first and second pull-down transistors when the memory cell is not being accessed such that the conduction terminal of the pull-down transistor that is turned off is maintained at a voltage level corresponding to a logic high voltage. In this way, the memory cell is capable of performing a latching function without pull-up transistors.
Abstract:
A ROM including an array, each cell of which is accessible by means of a column address and of a row address, includes a parity memory for storing the expected parity of each row and of each column, an electrically programmable one-time programmable address memory, a testing circuit for, during a test phase, calculating the parity of each row and of each column, comparing the calculated and expected parities for each row and each column, and in case they are not equal, marking the row or column in the address memory, and a correction circuit for, in normal mode, inverting the value read from the array cell, having its row and column marked in the address memory.
Abstract:
A device for reading/rewriting a memory cell of a dynamic random-access memory organized in rows and columns, comprises, for each column, a first read/rewrite amplifier, and at least one second read/rewrite amplifier arranged in parallel with the first amplifier. A controller is provided for one of the amplifiers so that the amplifier is able to store the information contained in the memory cell for refreshing thereof, and so that the other amplifier is able to simultaneously perform read/rewrite accesses to and from the memory cell. One of the amplifiers may be permanently dedicated to operations for refreshing the memory cells and the other may be dedicated to read/write operations. Outputs of the amplifiers are connected to common output columns, and the controller includes an interrupter for the output of each amplifier to isolate the output from the corresponding output column and from the corresponding output of the other amplifier.
Abstract:
A one-time programmable cell including an inverter providing a logic state according to the state of the cell; a fuse coupled between a first supply voltage and the inverter input; and a current source coupled between the fuse and a second supply voltage. The inverter is supplied from the second supply voltage through a first diode-connected transistor and the current source is formed of a second transistor controlled by the inverter output, this second transistor having a threshold voltage greater than that of the first transistor.
Abstract:
A memory device includes a defect memory, a test circuit, and a spare memory. The defect memory and the spare memory have as many rows as the array, and each row of the defect memory and the spare memory are selected when the corresponding row of the array is selected. A test circuit locates defective cells of the array and writes addresses in the defect memory to indicate locations of the defective cells. Additionally, a control circuit selects a row of the array based on a selected row address and redirects access to the corresponding row of the spare memory whenever a selected column address corresponds to one of the addresses stored in the defect memory. In one preferred embodiment, each of the rows of the defect memory stores information indicating if there is a defective cell in the corresponding row of the array and the column address of the defective cell. A computer system including such a memory device is also provided.
Abstract:
The present invention relates to an integrated circuit including at least one matrix network of identical elements capable of being individually addressed at least in a first direction and including, at least for this first direction, at least one redundancy element, and a circuit that reversibly inhibits the operation of a defective element and maintains the circuit operation by using the redundancy element.
Abstract:
The invention concerns a memory cell insensitive to disturbances. The memory cell, that contains information in the form of two complementary logical levels (X, C(X)), each logical level being stored in a node of the cell (N1, N2), is characterized in that it comprises means of storing the same logical level in two different nodes (N1, N2, N3, N4), the said means being able to restore any logical level to its initial state preceding a modification made on it due to a disturbance, as a result of holding the value of one of the two logical levels complementary to the logical level that was modified.