摘要:
Disclosed is a nonaqueous and nonvolatile liquid type polymeric electrolyte comprising poly(siloxane-g-ethylene oxide). This electrolyte provides significant safety and stability. The present invention solves the problems of volatility, flammability and chemical reactivity of lithium ion type electrolytes. The disclosed electrolyte exhibits excellent stability, conductivity and low impedance characteristics. The electrolyte comprises a new class of structural siloxane polymers with one or more poly(ethylene oxide) side chains. The inorganic siloxanes comprising the main backbone of the copolymers are thermally very stable and resistant to decomposition by heat. Because the main chain of the disclosed class of electrolytes is an Si—O linkage, initiation of the combustion cycle is inhibited or prevented.
摘要:
Cathode materials having an improved electronic conductivity allowing for faster kinetics in the electrochemical reaction, as well as higher conductivity to meet the power requirements for many consumer applications, especially at low temperatures. The cathode material comprises a compound from the family of compounds where the basic unit is generally represented by LixNi0.5TiOPO4. The structure of LixNi0.5TiOPO4 includes corner sharing octahedra [TiO6] running along the C-axis. The structure is such that nearly three Li atoms are being inserted in LixNi0.5TiOPO4. A cell in accordance with the principles of the present invention is rechargable and demonstrates a high capacity of lithium intercalation and fast kinetics.
摘要:
The invention relates to an improvement in a cell which is normally susceptible to damage from overcharging comprised of a negative electrode, a positive electrode, and an electrolyte comprised of an overcharge protection salt carried in a carrier or solvent. Representative overcharge protection salts are embraced by the formula: MaQ where M is an electrochemically stable cation selected from the group consisting of alkali metal, alkaline earth metal, tetraalkylammonium, or imidazolium groups, and Q is a borate or heteroborate cluster and a is the integer 1 or 2.
摘要:
An uncycled preconditioned electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li(2+2x)/(2+x)M′2x/(2+x)M(2−2x)/(2+x)O2−δ, in which 0≦x
摘要:
The invention relates to an improvement in a cell which is normally susceptible to damage from overcharging comprised of a negative electrode, a positive electrode, and an electrolyte comprised of an overcharge protection salt carried in a carrier or solvent. Representative overcharge protection salts are embraced by the formula: MaQ where M is an electrochemically stable cation selected from the group consisting of alkali metal, alkaline earth metal, tetraalkylammonium, or imidazolium groups, and Q is a borate or heteroborate cluster and a is the integer 1 or 2.
摘要:
A number of materials with the composition Li1+xNiαMnβCoγM′δO2−zFz (M′=Mg,Zn,Al,Ga,B,Zr,Ti) for use with rechargeable batteries, wherein x is between about 0 and 0.3, α is between about 0.2 and 0.6, β is between about 0.2 and 0.6, γ is between about 0 and 0.3, δ is between about 0 and 0.15, and z is between about 0 and 0.2. Adding the above metal and fluorine dopants affects capacity, impedance, and stability of the layered oxide structure during electrochemical cycling. Another aspect of the invention includes materials with the composition Li1+xNiαCoβMnγM′δOyFz (M′=Mg,Zn,Al,Ga,B,Zr,Ti), where the x is between 0 and 0.2, the α between 0 and 1, the β between 0 and 1, the γ between 0 and 2, the δ between about 0 and about 0.2, the y is between 2 and 4, and the z is between 0 and 0.5.
摘要:
A high power bipolar battery, such as a high power lithium polymer battery is provided. The bipolar battery includes a plurality of multiple cell assemblies. The plurality of multiple cell assemblies is connected in series to form the high power bipolar battery. Each of the plurality of multiple cell assemblies includes a rigid core with a bipolar cell stack of multiple cells wound together around the rigid core to produce a large active cell area. The wound bipolar cell stack includes a positive battery connection and a negative battery connection. A container surrounds the bipolar cell stack. A positive terminal carried by the container is connected to the positive battery connection. A negative terminal carried by the container is spaced apart from the positive terminal and connected to the negative battery connection. A state-of-charge connector carried by the container is spaced apart from the positive and negative terminals. The state-of-charge connector include multiple conductors, each connected to a respective one of the multiple cells.
摘要:
A lithium-ion battery having an anode electrode, a cathode electrode and a non-aqueous solvent lithium electrolyte. At least one cyclophosphazene is added to the non-aqueous solvent lithium electrolyte, which cyclophosphazene acts as a flame-retardant material. The non-aqueous solvent lithium electrolyte is preferably a carbonate-based electrolyte and the preferred cyclophosphazene is hexamethoxycyclotriphosphazene.
摘要:
A positive electrode active material for lithium battery which is represented by general formula Li.sub.x Mn.sub.2-y M.sub.y O.sub.4 (M: a 2-valency metal selected from Ni, Co, Fe and Zn with 0.45.ltoreq.y.ltoreq.0.60, 1.ltoreq.x.ltoreq.2.1) having cubic spinel structure of lattice constant within 8.190 angstrom. Such an active material is manufactured by employing sol-gel process wherein one of inorganic salt, hydroxide and organic acid salt of lithium or a mixture of these for Li, one of inorganic salt and organic acid salt of manganese or a mixture of these for Mn, and one of inorganic salt and organic acid salt of the selected metal or a mixture of these for M are used as the starting materials for synthesis, ammonia water is added to the solutions of these starting materials in alcohol or water to obtain gelatinous material and the gelatinous material thus obtained is fired.
摘要:
A positive electrode active material for lithium battery which is represented by general formula Li.sub.x Mn.sub.2-y M.sub.y O.sub.4 (M: a 2-valency metal, 0.45.ltoreq.y.ltoreq.0.60, 1.ltoreq.x.ltoreq.2.1) having cubic spinel structure of lattice constant within 8.190 angstroms.