摘要:
A method for manufacturing an integrated circuit structure includes providing a semiconductor substrate and forming a thyristor thereon. The thyristor has at least four layers, with three P—N junctions therebetween. At least two of the layers are formed horizontally and at least two of the layers are formed vertically. A gate is formed adjacent at least one of the vertically formed layers. An access transistor is formed on the semiconductor substrate, and an interconnect is formed between the thyristor and the access transistor.
摘要:
A method of fabricating first and second gates comprising the following steps. A substrate having a gate dielectric layer formed thereover is provided. The substrate having a first gate region and a second gate region. A thin first gate layer is formed over the gate dielectric layer. The thin first gate layer within the second gate region is masked to expose a portion of the thin first gate layer within the first gate region. The exposed portion of the thin first gate layer is converted to a thin third gate layer portion. A second gate layer is formed over the thin first and third gate layer portions. The second gate layer and the first and third gate layer portions are patterned to form a first gate within first gate region and a second gate within second gate region.
摘要:
A method for forming a gate dielectric having regions with different dielectric constants. A low-K dielectric layer is formed over a semiconductor structure. A dummy dielectric layer is formed over the low-K dielectric layer. The dummy dielectric layer and low-K dielectric layer are patterned to form an opening. The dummy dielectric layer is isontropically etched selectively to the low-K dielectric layer to form a stepped gate opening. A high-K dielectric layer is formed over the dummy dielectric and in the stepped gate opening. A gate electrode is formed on the high-K dielectric layer.
摘要:
A process for fabricating vertical CMOS devices, featuring variable channel lengths, has been developed. Channel region openings are defined in composite insulator stacks, with the channel length of specific devices determined by the thickness of the composite insulator stack. Selective removal of specific components of the composite insulator stack, in a specific region, allows the depth of the channel openings to be varied. A subsequent epitaxial silicon growth procedure fills the variable depth channel openings, providing the variable length, channel regions for the vertical CMOS devices.
摘要:
A method for forming a sub-quarter micron MOSFET having an elevated source/drain structure is described. A gate electrode is formed over a gate dielectric on a semiconductor substrate. Ions are implanted into the semiconductor substrate to form lightly doped regions using the gate electrode as a mask. Thereafter, dielectric spacers are formed on sidewalls of the gate electrode. A polysilicon layer is deposited overlying the semiconductor substrate, gate electrode, and dielectric spacers wherein the polysilicon layer is heavily doped. The polysilicon layer is etched back to leave polysilicon spacers on the dielectric spacers. Dopant is diffused from the polysilicon spacers into the semiconductor substrate to form source and drain regions underlying the polysilicon spacers. The polysilicon spacer on an end of the gate electrode is removed to separate the polysilicon spacers into a source polysilicon spacer and a drain polysilicon spacer thereby completing formation of a MOSFET having an elevated source/drain structure in the fabrication of an integrated circuit device.
摘要:
A new method of forming a sharp tip on a floating gate in the fabrication of a EEPROM memory cell is described. A first gate dielectric layer is provided on a substrate. A second gate dielectric layer is deposited overlying the first gate dielectric layer. A floating gate/control gate stack is formed overlying the second gate dielectric layer. One sidewall portion of the floating gate is covered with a mask. The second gate dielectric layer not covered by the mask is etched away whereby an undercut of the floating gate is formed in the second gate dielectric layer. The mask is removed. Polysilicon spacers are formed on sidewalls of the floating gate wherein one of the polysilicon spacers fills the undercut thereby forming a sharp polysilicon tip to improve the erase efficiency of the memory cell.
摘要:
A method of fabricating an isolated vertical transistor comprising the following steps. A wafer having a first implanted region selected from the group comprising a source region and a drain region is provided. The wafer further includes STI areas on either side of a center transistor area. The wafer is patterned down to the first implanted region to form a vertical pillar within the center transistor area using a patterned hardmask. The vertical pillar having side walls. A pad dielectric layer is formed over the wafer, lining the vertical pillar. A nitride layer is formed over the pad dielectric layer. The structure is patterned and etched through the nitride layer and the pad dielectric layer; and into the wafer within the STI areas to form STI trenches within the wafer. The STI trenches are filled with insulative material to form STIs within STI trenches. The patterned nitride and pad dielectric layers are removed. The patterned hardmask is removed. Gate oxide is grown over the exposed portions of the wafer and the vertical pillar. Spacer gates are formed over the gate oxide lined side walls of the vertical pillar. Spacer gate implants are formed within the spacer gates, and a second implanted region is formed within the vertical pillar selected from the group consisting of a drain region and a source region that is not the same as the first implanted region to complete formation of the isolated vertical transistor.
摘要:
A method for a self aligned TX with elevated source/drain (S/D) regions on an insulated layer (oxide) by forming a trench along side the STI and filling the trench with oxide. STI regions are formed in a substrate. A gate structure is formed. LDD regions are formed adjacent to the gate structure in the substrate. Spacers are formed on the sidewall of the gate structure. We etch S/D trenches between the STI regions and the first spacers. The S/D trenches are filled with a S/D insulating layer. Elevated S/D regions are formed over the S/D insulating layer and the LDD regions. A top isolation layer is formed over the STI regions. The invention builds the raised source/drain (S/D) regions on an insulating layer and reduces junction leakage and hot carrier degradation to gate oxide.
摘要:
An improved MOS transistor and method of making an improved MOS transistor. An MOS transistor having a recessed source drain on a trench sidewall with a replacement gate technique. Holes are formed in the shallow trench isolations, which exposes sidewall of the substrate in the active area. Sidewalls of the substrate are doped in the active area where holes are. Conductive material is then formed in the holes and the conductive material becomes the source and drain regions. The etch stop layer is then removed exposing sidewalls of the conductive material, and oxidizing exposed sidewalls of the conductive material is preformed. Spacers are formed on top of the pad oxide and on the sidewalls of the oxidized portions of the conductive material. The pad oxide layer is removed from the structure but not from under the spacers. A gate dielectric layer is formed on the substrate in the active area between the spacers; and a gate electrode is formed on said gate dielectric layer.
摘要:
A method to form a MOS transistor with a narrow channel regions and a wide top (second) gate portion. A gate dielectic layer and a first gate layer are formed over a substrate. A second gate portion is formed over the first gate layer. Spacers are formed on the sidewalls of the second gate portion. In a critical step, we isotropically etch the first gate layer to undercut the second gate portion to form a first gate portion so that the first portion has a width less than the second gate portion. The spacers are removed. Lightly doped drains, sidewall spacers and source/drain regions are formed to complete the device.