Abstract:
Raman-enhancing structures include a photonic crystal having a resonant cavity and at least one waveguide coupled to the resonant cavity. A nanostructure comprising a Raman-enhancing material is disposed proximate the resonant cavity of the photonic crystal. Raman-enhancing structures include a microdisk resonator, at least one waveguide coupled to the microdisk resonator, and a nanostructure comprising a Raman-enhancing material disposed proximate the microdisk resonator. Methods for performing Raman spectroscopy include generating radiation, guiding the radiation through a waveguide to a resonant cavity in a photonic crystal or a microdisk resonator, resonating the radiation in the resonant cavity or microdisk resonator, providing an analyte proximate the resonant cavity or microdisk resonator, subjecting the analyte to the resonating radiation, and detecting Raman scattered radiation.
Abstract:
An apparatus for cleaning a wafer has a first chamber and a component coupled to the first chamber. The first chamber has a first input to form de-ionized water droplets. The component is coupled to the first chamber to further atomize and apply the atomized de-ionized water droplets on the wafer.
Abstract:
Wavelength-tunable radiation amplifying structures for Raman spectroscopy are disclosed that include resonant cavities having Raman signal-enhancing structures disposed therein. Systems that include the amplifying structures and methods of performing spectroscopic analysis using the structures and systems are also disclosed.
Abstract:
A nanochannel apparatus and method of fabrication provide an array of nanochannels with distal open or exposed ends formed in situ through a permanent support. A nanofluidic system includes the nanochannel apparatus, a fluidic interface, and a component interfaced to the nanochannel apparatus. The method includes encasing an array of nanowires in a support, and forming the array of nanochannels in situ in locations of the nanowires, such that distal ends of the nanochannels are exposed.
Abstract:
An assembly for monitoring an environment includes a RFID tag and a sensing unit. The sensing unit is configured to be activated by a RF signal received by the RFID tag and to sense information regarding an environment.
Abstract:
A method for tailoring at least portions of an exposed non-planar layered surface of a conductive layer formed on a substrate having a first surface roughness to provide the exposed surface with a second surface roughness. The method includes: forming the conductive layer on the substrate; and tailoring at least portions of the exposed surface of the conductive layer in a plasma to at least smooth the exposed surface of the conductive layer, whereby the second surface roughness is essentially the same as the first surface roughness.
Abstract:
Surface photovoltage is used for molecule sensing. The sensing is performed by exposing a surface of a semiconductor to molecules, and sensing a change in surface photovoltage of the semiconductor. Chemical and biological sensors may be based on such sensing.
Abstract:
A method is provided for fabricating molecular electronic devices comprising at least a bottom electrode and a molecular switch film on the bottom electrode. The method includes forming the bottom electrode by a process including: cleaning portions of the substrate where the bottom electrode is to be deposited; pre-sputtering the portions; depositing a conductive layer on at least the portions; and cleaning the top surface of the conductive layer. Advantageously, the conductive electrode properties include: low or controlled oxide formation (or possibly passivated), high melting point, high bulk modulus, and low diffusion. Smooth deposited film surfaces are compatible with Langmuir-Blodgett molecular film deposition. Tailored surfaces are further useful for SAM deposition. The metallic nature gives high conductivity connection to molecules. Barrier layers may be added to the device stack, i.e., Al2O3 over the conductive layer.
Abstract:
A method is provided for fabricating molecular electronic devices comprising at least a bottom electrode and a molecular switch film on the bottom electrode. The method includes forming the bottom electrode by a process including: cleaning portions of the substrate where the bottom electrode is to be deposited; pre-sputtering the portions; depositing a conductive layer on at least the portions; and cleaning the top surface of the conductive layer. Advantageously, the conductive electrode properties include: low or controlled oxide formation (or possibly passivated), high melting point, high bulk modulus, and low diffusion. Smooth deposited film surfaces are compatible with Langmuir-Blodgett molecular film deposition. Tailored surfaces are further useful for SAM deposition. The metallic nature gives high conductivity connection to molecules. Barrier layers may be added to the device stack, i.e., Al2O3 over the conductive layer.
Abstract:
An optical sensor is provided, comprising (a) a silicon nanowire of finite length having an electrical contact pad at each end thereof; and (b) a plurality of self-assembled molecules on a surface of the silicon nanowire, the molecules serving to modulate electrical conductivity of the silicon nanowire by either a reversible change in dipole moment of the molecules or by a reversible molecule-assisted electron/energy transfer from the molecules onto the silicon nanowire. Further, a method of making the optical sensor is provided. The concept of molecular self-assembly is applied in attaching functional molecules onto silicon nanowire surfaces, and the requirement of molecule modification (hydroxy group in molecules) is minimal from the point view of synthetic difficulty and compatibility. Self-assembly will produce well-ordered ultra-thin films with strong chemical bonding on a surface that cannot be easily achieved by other conventional methods.