Abstract:
Methods for preparing an impact copolymer by selecting a continuous phase polymer having a first melt flow rate and selecting a rubber phase polymeric material such that the final melt flow rate of the impact copolymer is within 2 g/10 min of the first melt flow rate. Impact copolymers made from such methods and films and molded articles produced from such impact copolymers are also included.
Abstract:
An in-mold label comprising a cast film and a process for producing a cast film, that comprises a polypropylene resin and a nucleator. The polypropylene resin has a melt flow rate from 2 dg/min. to 10 dg/min., a xylene solubles content less than 1 wt %, and meso pentad distribution greater than 98%.
Abstract:
A method comprising contacting a first styrenic polymer composition comprising residual styrene monomer with a molecular sieve, and recovering a second styrenic polymer composition comprising a reduced amount of residual styrene monomer. A composition comprising a styrenic polymer having a residual styrene monomer amount of less than 100 ppm produced by contacting a styrenic polymer composition having a residual styrene monomer amount of equal to or greater than 100 ppm with a molecular sieve, and recovering the styrenic polymer having a residual styrene monomer amount of less than 100 ppm. A method comprising providing a styrenic polymer composition having a residual styrene monomer amount of equal to or greater than 100 ppm, contacting the styrenic polymer composition with a molecular sieve, adding a nucleating agent, a foaming agent, and a coloring agent to the styrenic polymer composition, and forming an expanded styrenic polymer composition having a residual styrene monomer amount of less than 100 ppm.
Abstract:
A method comprising preparing a reaction mixture comprising a styrene monomer, an antioxidant, and a reaction rate improving additive, contacting the reaction mixture with an antioxidant reactive compound, and placing the reaction mixture under conditions suitable for polymerization of the styrene monomer to a styrenic polymer wherein the polymerization occurs at an overall reaction rate that is increased by equal to or less than 20% when compared to an otherwise similar polymerization process carried out in the absence of the reaction rate improving additive A method comprising preparing a reaction mixture comprising a styrene monomer, an elastomer, an antioxidant, a sodium or calcium salt of an organic acid, and an initiator; and placing the reaction mixture under conditions suitable for polymerization of the styrene monomer to a styrenic polymer, wherein the sodium or calcium salt of an organic acid protects the initiator such that the polymerization is carried out at a reaction rate greater than would otherwise be the rate in the absence of the sodium or calcium salt of an organic acid.
Abstract:
A processable polypropylene composition comprising a mixture of a major amount of a syndiotactic polypropylene and a minor amount of polyethylene wax. The syndiotactic polypropylene has a designated recrystallization temperature, an original minor melting peak and a higher original melting peak. The polyethylene wax provides a recrystallization temperature of the mixture that is greater than the recrystallization temperature of the syndiotactic polypropylene alone and also provides for a minor melting peak and a major melting peak of the mixture, which has a temperature difference which is lower than the difference between the original minor melting peak and the original major melting peak of the syndiotactic polypropylene alone. A process for the production of polypropylene product employing a polyethylene-syndiotactic polypropylene composition as described which is heated to provide a plastic mass of the syndiotactic polypropylene and polyethylene which is processed to provide the product.
Abstract:
Blown films and processes of forming the same are described herein. The processes generally include providing a bimodal ethylene based polymer, blending the bimodal ethylene based polymer with at least about 30 ppm peroxide to form modified polyethylene and forming the modified polyethylene into a blown film.
Abstract:
The present invention relates to polyethylene films, and to processes for making films. In particular the invention relates to solid state stretched films that may be monoaxially or biaxially oriented. The processes can tolerate high draw ratios and lower extrusion pressures and amperes while producing films having high tensile strength and modulus as well as low shrinkage. The polyethylene used to make the films has a density of from 0.940 to less than 0.960, a molecular weight distribution of greater than 10, a melt flow index ranging from 0.30 dg.min to 1.00 dg/min and a weight average molecular weight of 300,000 or less.
Abstract:
A metal-modified alkylation catalyst including a metal/zeolite is provided where the metal is one or two selected from the group consisting of yttrium and a rare earth of the lanthanide series other than cerium. Where two metals are used, one may be Ce or La. The metal-promoted zeolite is useful as a molecular sieve aromatic alkylation catalyst for the production of ethylbenzene by the ethylation of benzene in the liquid phase or critical phase. An alkylation product is produced containing ethylbenzene as a primary product with the attendant production of heavier alkylated by-products of no more than 10-60 wt % of the ethylbenzene.
Abstract:
Polyethylene modified by using radical initiators such as oxygen and peroxides sometimes has a yellow color which may be reduced or eliminated by incorporating additives such as polyethylene glycol, and/or neutralizing species such as alkali metal stearates, particularly calcium stearate, and zinc oxide.
Abstract:
A nickel-mordenite catalyst promoted with Rhodium that is useful in the conversion of hydrocarbons is disclosed. The catalyst and methods for its use can provide hydrocarbon conversion with an extended catalyst life as compared to nickel-mordenite catalyst not promoted with Rhodium.