Abstract:
An apparatus and method for crosstalk compensation in a jack of a modular communications connector includes connected to the plug interface contacts proximate the plug/jack interface. The structure configured to allow the current to flow generally orthogonal to the plug interface contact.
Abstract:
Certain embodiments of the present invention provide an apparatus for closing off an opening above, below, or between electronic equipment in a rack. The rack includes a pair of equipment rails. The electronic equipment is mounted to the equipment rails. The apparatus includes a base, a roller shade, and a handle. The roller shade is rotatably connected to the base and includes a free end extending from the base when the roller shade is rotated. The handle is connected to the free end of the roller shade. The base is removably connected to the equipment rails at a first position. The handle is removably connected to the equipment rails at a second position spaced apart from the first position such that the free end of the roller shade is extended to close off the opening in the rack.
Abstract:
An electronics cabinet having a cabinet frame, a front equipment rail, and a structural air dam. The cabinet frame includes a first pair of front-to-back beams connected to a pair of top side-to-side beams to form a top frame, a second pair of front-to-back beams connected to a pair of bottom side-to-side beams to form a bottom frame, and a plurality of vertical post connected to the top frame and the bottom frame. The front equipment rail is removably connected to one of the first pair of front-to-back beams and to one of the second pair of front-to-back beams. The structural air dam is connected to the front equipment rail and to one of the plurality of vertical posts.
Abstract:
A duplex clip assembly for LC fiber optic plug connectors has a duplex housing, a crimp sleeve, and a housing cover. The duplex housing retains a portion of each fiber optic plug connector such as to allow each fiber optic plug connector to rotate relative to the duplex housing. The housing also has a bottom snap located on an underside. The housing cover encloses and retains the duplex housing with a clearance between the housing cover and the rest of the assembly. The housing cover also has a slot located on an underside configured to engage the bottom snap of the duplex housing such that the clearance fit allows an application of pressure on the sides of the housing cover to result in the slot being disengaged from the bottom snap. The clip assembly can also have a boot securely attached to the housing partially enclosing the fiber optic cable.
Abstract:
A self-laminating rotating cable marker label is constructed of a transparent film having a first adhesive area, an adhesive-free smooth area, and a second adhesive area. A print-on area forms one side of the transparent film, the print-on area adapted to receive indicia identifying the cable about which the marker label is applied. A perforation extends across the transparent film providing a line of separation of the transparent film. When wrapped around a cable, the second adhesive area overlies the print-on area such that the cable identifying indicia is visible through the transparent second adhesive area. As the transparent film is wrapped around the cable, the first adhesive area adheres to the cable. The remainder of the transparent film is rotated, breaking the perforation, whereby the smooth area of the film in contact with the cable provides smooth rotation of the label around the cable.
Abstract:
A communication jack having crosstalk compensation features for overall crosstalk interference reduction is disclosed. In one embodiment, the jack is configured to receive a plug to form a communication connection, and comprises jack contacts disposed in the jack, with each contact having at least a first surface and a second surface. Upon the plug being received by the jack, the plug contacts interface with the first surface of the jack contacts. The jack further includes a first capacitive coupling connected between two pairs of jack contacts to compensate for near end crosstalk, with the first capacitive coupling being connected to the pairs of jack contacts along the second surface adjacent to where the plug contacts interface with the jack contacts. A far end crosstalk compensation scheme is also set forth.
Abstract:
An intelligent network patch field management system is provided that includes active electronic hardware, firmware, mechanical assemblies, cables, and software that guide, monitor, and report on the process of connecting and disconnecting patch cords plugs in an interconnect or cross-connect patching environment. The system is also capable of monitoring patch cord connections to detect insertions or removals of patch cords or plugs. In addition, the system can map embodiments of patch fields.
Abstract:
A high density fiber enclosure system includes a chassis, cassette trays, an optional unification clip, cassettes, and an optional trunk cable management system. The chassis, cassette trays, and cassettes are configured such that individual cassettes may be installed, removed, and otherwise positioned for easy access by a user. The unification clip allows two adjacent cassette trays to be connected to one other such that cassette trays move as one unit. The trunk cable management system is designed to organize trunk cables and trunk cable furcation legs as well as relieve strain on the trunk cables and trunk cable furcation legs.
Abstract:
An intelligent network patch field management system is provided that includes electronic hardware, firmware, mechanical assemblies, cables, and software that provide visible and audible cues for connecting and disconnecting patch cords in an interconnect or cross-connect patching environment. Systems of the present invention also monitor patch cord connections in a network.
Abstract:
A self-laminating rotating cable marker label is constructed of a transparent film having a first adhesive area, an adhesive-free smooth area, and a second adhesive area. A print-on area forms one side of the transparent film, the print-on area adapted to receive indicia identifying the cable about which the marker label is applied. A perforation extends across the transparent film providing a line of separation of the transparent film. When wrapped around a cable, the second adhesive area overlies the print-on area such that the cable identifying indicia is visible through the transparent second adhesive area. As the transparent film is wrapped around the cable, the first adhesive area adheres to the cable. The remainder of the transparent film is rotated, breaking the perforation, whereby the smooth area of the film in contact with the cable provides smooth rotation of the label around the cable.