Abstract:
Stent delivery system comprising a catheter shaft having a proximal end portion and a distal end portion and an expandable member provided at the distal end portion of the shaft, the expandable member having a delivery condition and a deployed condition and formed at least in part from a matrix of fiber elements to define a continuous surface substantially free of openings when in the delivery condition.
Abstract:
A closure device for closing an opening in tissue is provided. The closure device includes an elongate member through which needles may be deployed. The closure device also includes a closure element having a foot portion and a needle guide portion. The foot portion and the needle guide portion are each movable between a delivery configuration and a deployed configuration. The foot portion includes cuffs removably mounted thereon and having sutures connected therebetween. The needle guide portion includes needle guide apertures that guide the needles to the cuffs. The needles securely engage the cuffs and draw the cuffs and suture through the lumen wall so that the opening in the lumen wall can be closed with the sutures.
Abstract:
A tissue closure device including a hub and first and second flanges extending therefrom. The hub extends along a central longitudinal axis between a proximal surface and an opposing distal surface. The first flange is frameless and extends from the hub adjacent the proximal surface thereof. The second flange extends from the hub adjacent the distal surface thereof. The first and second flanges are moveable between: a closed position, in which the first and second flanges extend radially away from the hub and are substantially orthogonal to the central longitudinal axis; and an open position, in which the first and second flanges extend longitudinally away from the hub in opposite directions from each other and are substantially parallel with the central longitudinal axis.
Abstract:
A biocompatible plasticizer useful for forming a coating composition with a biocompatible polymer is provided. The coating composition may also include a biobeneficial polymer and/or a bioactive agent. The coating composition can form a coating on an implantable device. The implantable device can be used to treat or prevent a disorder such as atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, or combinations thereof.
Abstract:
An implantable prosthesis can comprise a strut having a lumen, radiopaque particles within the lumen, and a polymer binder. The polymer binder retains the radiopaque particles within the lumen. The strut may have side holes through which a therapeutic agent may pass and through which the radiopaque particles are incapable of passing. The polymer binder may be absent or optional. The radiopaque particles can have sizes that prevent them from escaping out of the lumen through the side holes. The radiopaque particles placed within the lumen can improve visualization of the prosthesis during an implantation procedure.
Abstract:
Stents including a poly(D,L-lactide)(PDLLA)-based scaffold and PDLLA based therapeutic layer are disclosed. The PDLLA based scaffold may be amorphous and may include a primer layer. Methods of applying the PDLLA-based coating to the scaffold are disclosed with solvent processing methods using a solvent blend are also disclosed. Methods of removing residual solvent from a PDLLA-base coating that also condition the scaffold are disclosed. Methods of treating restenosis that release drugs to prevent restenosis without interfering with the natural positive remodeling of a vessel are disclosed.
Abstract:
A medical device includes a polymer scaffold crimped to a catheter having an expansion balloon. The scaffold has a structure that produces a low late lumen loss when implanted within a peripheral vessel and also exhibits a high axial fatigue life. In a preferred embodiment the scaffold forms ring structures interconnected by links, where a ring has 12 crowns and at most two links connecting adjacent rings.
Abstract:
A polymeric stent can be implanted for treatment of the Eustachian tube. The stent can be designed to have length-dependent radial strength to allow it to stay within the Eustachian tube and to allow normal closing and opening of the Eustachian tube. A balloon can be used to implant the stent, and the balloon can be coated with a therapeutic agent. A coated balloon can also be used to transfer therapeutic agents to the sinus cavity during a balloon sinus dilation procedure.
Abstract:
A stent crimping tool insert comprises a core body configured for insertion into and removal from within a crimping chamber of a stent crimping tool. The core body has a core surface configured to withstand a compressive force without a reduction in diameter of the core surface.