Abstract:
The present invention relates to manufacture of container product with a constant level of quality, wherein the performance is constant, by resolving problems including transformation of perform performance caused by the temperature variation of the preform; or by the variation in the stretching blow molding due to a thermal difference between the surface and the inner part of the preform, resulting from the thickness thereof, in order to industrialize a new molding method recognized to be an excellent molding method from the point of view of economic efficiency and production efficiency, wherein compression molding and stretch blow molding are performed continuously. By a method or device for manufacturing continuously synthetic resin containers, preforms are molded by compression with a compression molding machine, then stretch blow molding is performed with a stretch blow molding machine. After discharging molded preforms from the compression molding machine, an even-heating treatment of preforms, a partial heating or partial cooling treatment according to need and then stretch blow molding are performed.
Abstract:
There is provided a laminate comprising a hard coat layer having the outermost surface to which slipperiness has been imparted.The laminate comprises a transparent substrate and a hard coat layer provided on said transparent substrate. The hard coat layer is formed of a cured product of a composition comprising a fluorine-modified urethane acrylate and/or a polydimethylsiloxane having a polyether-modified acryl or polyether group.
Abstract:
In-plane distribution of a target object contained in a sample is measured. The sample dispersedly placed on a substrate is treated to promote ionization of the target object. Then, the mass and flying amount of an ion containing the target object or a component thereof is determined by irradiating an ion beam to the sample and performing time-of-flight secondary ion mass spectrometry of the ion that flies from a portion in the sample where the ion beam is irradiated, and the in-plane distribution of the target object is determined from the mass and flying amount data obtained at plural portions by scanning the beam on the sample plane. The step of treating the sample to promote ionization of the target object includes contacting an aqueous solution of an acid that does not crystallize at ordinary temperature with the sample. A high spatial resolution two-dimensional image can be obtained.
Abstract:
To provide a beverage dispenser capable of appropriately and smoothly supplying a supercooled beverage. According to the present invention, there is disclosed a beverage dispenser including a beverage supply circuit 7 which supplies a carbonated beverage to the outside a primary cooling device 13, a secondary cooling device 30, and a heat exchanger 16 for supercooling which allows these components to cool the carbonated beverage flowing through the beverage supply circuit 7 into a supercooled state at a temperature of a solidifying point or less. The heat exchanger 16 supplies the carbonated beverage in the supercooled state to release the supercooled state in the outside, and the carbonated beverage on standby for serving in a portion of the beverage supply circuit 7 cooled by at least the heat exchanger 16 for supercooling is maintained in an unsaturated state.
Abstract:
An information acquisition method for acquiring information on a target object, that includes a step of promoting ionization of the target object using a substance for promoting ionization of the target object to cause the target object to emit, and a step of acquiring information on the mass of the flew target object using time-of-flight secondary ion mass spectrometry.
Abstract:
An apparatus for feeding a molten resin is operated for extended periods of time maintaining stability without permitting volatile components of the molten resin to adhere on the surfaces of conveyer means. An extruder in the apparatus for feeding the molten resin to the compression-forming machine has an extrusion unit which discharges a molten resin through an extrusion opening of an extrusion nozzle. An air injection nozzle for injecting the cooling gas is provided along the outer circumference of the extrusion nozzle, and the cooling gas is blown onto the surface of the molten resin extruded from the extrusion opening to cool the surface of the molten resin.
Abstract:
A time-of-flight secondary ion mass spectrometer comprises an ion source which generates cluster ions each comprised of two or more atoms, a pulsing mechanism which pulses the cluster ions, a selecting mechanism which selects ions having a specific mass number from the pulsed cluster ions and passes the selected ions in an ON state of the selecting mechanism, and, passes the pulsed cluster ions without the selecting in an OFF state of the selecting mechanism, and a time-of-flight mass spectrometric unit which measures a mass spectrum of secondary ions generated from a sample using a difference in time of flight when the sample is irradiated with the ions passed through the selecting mechanism.
Abstract:
An information acquisition method for acquiring information on a target object, that includes a step of promoting ionization of the target object using a substance for promoting ionization of the target object to cause the target object to emit, and a step of acquiring information on the mass of the flew target object using time-of-flight secondary ion mass spectrometry.
Abstract:
A method for manufacturing a probe needle having beams and a contactor placed on tips of the beams comprises preparing a Si wafer 20, forming a seed layer 21 on the Si wafer 20, and forming grooves in a desired shape of the beams on the seed layer 21 by patterning a photoresist 23. Subsequently, the grooves are filled up with metal-plated layers 24a, 24b to form the desired shape of beams.
Abstract:
A method for manufacturing a probe needle having beams and a contactor placed on tips of the beams comprises preparing a Si wafer 20, forming a seed layer 21 on the Si wafer 20, and forming grooves in a desired shape of the beams on the seed layer 21 by patterning a photoresist 23. Subsequently, the grooves are filled up with metal-plated layers 24a, 24b to form the desired shape of beams.