Abstract:
A semiconductor device includes a semiconductor substrate; a first electrode formed over the semiconductor substrate; a first insulation film covering the first electrode and having an aperture for exposing a part of the first electrode; a first conductive film formed on a part of the first insulation film and the first electrode inside the aperture; an isolation region placed inside the aperture; and a second conductive film formed on the first conductive film and the isolation region.
Abstract:
A thin film piezoelectric actuator comprises a driving part at least one end of which is supported by an anchor portion. The driving part includes: a piezoelectric film, a first lower electrode provided under a first region of the piezoelectric film, a second lower electrode provided under a second region different from the first region of the piezoelectric film, a first upper electrode provided opposite to the first lower electrode on the piezoelectric film, a second upper electrode provided opposite to the second lower electrode on the piezoelectric film, a first connection part that electrically connects the first lower electrode and the second upper electrode via a first via hole formed in the piezoelectric film, and a second connection part that electrically connects the second lower electrode and the first upper electrode via a second via hole formed in the piezoelectric film.
Abstract:
A piezoelectric thin film device includes an amorphous metal film disposed on a substrate and a piezoelectric film disposed on the amorphous metal. One of crystal axis of the piezoelectric film is aligned in a direction perpendicular to a surface of the amorphous metal.
Abstract:
A semiconductor device according to the present invention includes a semiconductor substrate; a capacitor having a lower electrode formed on said semiconductor substrate, a capacity insulating film formed on said lower electrode, and an upper electrode formed on said capacity insulating film; contact holes formed on said upper electrode and said lower electrode; a barrier layer containing oxygen, formed inside said contact holes; and a conductive layer which fills said contact holes in which said barrier layer is formed on the inside.
Abstract:
A thin film piezoelectric actuator comprises a driving part at least one end of which is supported by an anchor portion. The driving part includes: a piezoelectric film, a first lower electrode provided under a first region of the piezoelectric film, a second lower electrode provided under a second region different from the first region of the piezoelectric film, a first upper electrode provided opposite to the first lower electrode on the piezoelectric film, a second upper electrode provided opposite to the second lower electrode on the piezoelectric film, a first connection part that electrically connects the first lower electrode and the second upper electrode via a first via hole formed in the piezoelectric film, and a second connection part that electrically connects the second lower electrode and the first upper electrode via a second via hole formed in the piezoelectric film.
Abstract:
A piezoelectric-driven MEMS device can be fabricated reliably and consistently. The piezoelectric-driven MEMS device includes: a movable flat beam having a piezoelectric film disposed above a substrate with a recessed portion such that the piezoelectric film is bridged over the recessed portion, piezoelectric drive mechanisms disposed at both ends of the piezoelectric film and configured to drive the piezoelectric film, and a first electrode disposed at the center of the substrate-side of the piezoelectric film, and a second electrode disposed on a flat part of the recessed portion of the substrate and facing the first electrode of the movable flat beam.
Abstract:
The present invention provides a voltage controlled oscillator comprising an thin film BAW resonator and a variable capacitor element. The thin film BAW resonator includes an anchor section formed on a Si substrate, a lower electrode supported on the anchor section and positioned to face the Si substrate, a first piezoelectric film formed on the lower electrode, and an upper electrode formed on the first piezoelectric film. On the other hand, the variable capacitor element includes a stationary electrode formed on a Si substrate, an anchor section formed on the Si substrate, a first electrode supported on the anchor section and positioned to face the Si substrate, a second piezoelectric film formed on the first electrode, and a second electrode formed on the second piezoelectric film.
Abstract:
In a method of manufacturing a semiconductor device, a semiconductor substrate including an insulating layer is provided. A groove is formed on the insulating layer. An additive-containing barrier layer is formed on the insulating layer. A metal seed layer and a metal layer are formed on the barrier layer. Then, the metal layer is subjected to a first heat treatment at a first temperature that is capable of promoting grain growth of the metal seed layer and the metal layer. The barrier layer, the metal seed layer and the metal layer are partially removed so that a conductive layer including the metal seed layer and the metal layer is formed in the groove. Finally, the conductive layer is subjected to a second heat treatment at a second temperature that is higher than the first temperature and allows an additive element in the barrier layer to diffuse into the metal layer.
Abstract:
A piezoelectric thin film resonator which comprises a first electrode, a second electrode, and a piezoelectric film which is interposed between the first electrode and the second electrode, and formed of an epitaxial ferroelectric thin film containing barium titanate, a spontaneous polarization of the epitaxial ferroelectric thin film being uniaxially orientated in a direction normal to a film surface.
Abstract:
A semiconductor integrated memory device comprises a plurality of memory cell blocks, which are formed in the form of a matrix and each of which comprises: a memory cell chain including a plurality of units, each comprising a ferroelectric memory capacitor and a control transistor connected in parallel thereto; a reference capacitor of a unit comprising a reference capacitor and a control transistor connected in parallel thereto; a read transistor having a gate electrode connected to a connection point between the memory cell chain and the reference cell; and a control transistor for adjusting potentials of storage node which is a connection point of the first electrode of the memory capacitor, the third electrode of the reference capacitor and the read transistor. With this construction, the semiconductor integrated memory device is able to be easily produced, to stably retain a ferroelectric polarization and to scale down.