Abstract:
Electric heating/warming composite fabric articles have at least a fabric layer having inner and outer surfaces, and an electric heating/warming element, e.g., including a bus, formed, e.g., of die cut metallized textile or plastic sheeting or metal foil, affixed at a surface of the fabric layer and adapted to generate heating/warming when connected to a power source. A air-and-water droplet resistant and water vapor permeable barrier layer may be positioned, for example, adjacent to the fabric layer; e.g., with the electric heating/warming element formed thereupon or at least partially impregnated therein, e.g. in a fabric laminate or in a composite formed by application of heat and pressure to at least one layer of a barrier film disposed adjacent thereto, including to protect the electric circuit, e.g. against abrasion, moisture, and or against physical stress due, e.g., to repeated crushing, bending or flexing. Methods of forming electric heating/warming composite fabric articles are described and claimed.
Abstract:
A composite fabric article includes multi-filament, interlaced yams forming a knit construction. The fabric article has an inner surface and an outer surface where the inner surface has at least one region of raised fibers or fleece formed thereupon, and the outer surface has an area upon which a non-continuous coating of discrete coating segments of coating material is applied to bind individual yarn fibers together in bound groupings and to enhance abrasion resistance of the outer surface.
Abstract:
An under body armor hybrid fabric garment has first and second fabric portions. The first fabric portion, configured to cover an upper torso region of a user's body left exposed by the body armor and extending into a second body transition region covered by the body armor, is formed of low or no stretch fabric. The second fabric element, configured to cover a lower torso region of the user's body underneath the body armor, is formed of stretchable fabric.
Abstract:
Covers for mattresses having a reclining surface of viscoelastic foam have a fabric body with a first surface disposed in engagement with the reclining surface; an opposite, second surface disposed for engagement by a person reclining upon the cover; and at least one air flow region defined by the fabric body for enhanced circulation of air between the reclining surface of viscoelastic foam and an opposed skin surface of the person reclining upon the cover.
Abstract:
Methods are described for forming unitary fabric elements for use in engineered thermal fabric articles, including, but not limited to, thermal fabric garments, thermal fabric home textiles, and thermal fabric upholstery covers, and for forming these engineered thermal fabric articles, having predetermined discrete regions of contrasting insulative capacity positioned about the thermal fabric article in correlation to insulative requirements of a user's body. The fabric element has at least two regions of contrasting insulative capacity. The method includes designing a pattern and combining yarns in a continuous web according to the pattern. In one implementation, loop yarn in first regions is formed to a first pile height, and loop yarn in other regions is formed to another, different, relatively greater pile height. In another implementation, loop yarn having a first shrinkage performance is formed in first regions to a predetermined loop height, and loop yarn having another, different shrinkage performance is formed in other regions to the predetermined loop height, or other loop height; the loops are cut and finished to a common pile height and the continuous web is exposed to heat to cause loop yarn to shrink to one or more different pile heights. In both implementations, the method includes the further steps of: finishing one or both surfaces of the continuous web to form regions of contrasting pile heights; and removing the fabric element from the continuous web according to the predetermined pattern of regions. Unitary fabric elements and engineered thermal fabric articles, including, but not limited to, garments and home textiles, formed of the unitary fabric element and farmed, e.g., by methods of the disclosure are also described.
Abstract:
Electric heating/warming composite fabric articles have at least a fabric layer having inner and outer surfaces, and an electric heating/warming element, e.g., including a bus, formed, e.g., of die cut, metallized textile or plastic sheeting or metal foil, affixed at the inner surface of the fabric layer and adapted to generate heating/warming when connected to a power source. A barrier layer may be positioned, for example, adjacent to the inner surface of the fabric layer; e.g., with the electric heating/warming element formed thereupon, including to protect the electric circuit, e.g. against abrasion.
Abstract:
An air-permeable composite fabric is provided. The composite fabric has an inner fabric layer, an outer fabric layer, and an intermediate vapor barrier. The vapor barrier is selected from adhesive material and an adhesive/membrane combination designed so the composite fabric has a level of air permeability to allow air flow between the first fabric layer and the second fabric layer and a variable level of water vapor diffusion resistance that decreases as air speed impinging on the composite fabric increases.
Abstract:
A composite fabric article includes multi-filament, interlaced yarns forming a knit construction. The fabric article has an inner surface and an outer surface where the inner surface has at least one region of raised fibers or fleece formed thereupon, and the outer surface has an area upon which a non-continuous coating of discrete coating segments of coating material is applied to bind individual yarn fibers together in bound groupings and to enhance abrasion resistance of the outer surface.
Abstract:
Electric heating/warming composite fabric articles have at least a fabric layer having inner and outer surfaces, and an electric heating/warming element in the form of a flexible, preferably stretchable, electricity-conducting film disposed at the inner surface of the fabric layer and adapted to generate heating/warning when connected to a power source. A barrier layer may be positioned, for example, adjacent to the inner surface of the fabric layer; e.g., with the electric heating/warming element formed thereupon, including to protect the electric circuit, e.g. against abrasion. Methods of forming electric heating/warming composite fabric articles are also described.
Abstract:
A fabric article of knitted or woven construction with multi-filament, interlaced yarns has a pile or raised or fleece region on its inner surface and a discontinuous coating of binder material on its outer surface. The binder material provides improved durability against pilling and fraying without substantial adverse effect on characteristics of the base fabric. A method of forming the fabric article is also described.