Abstract:
Methods and apparatuses are described for wireless communications. A first method includes transmitting a first Orthogonal Frequency-Division Multiple Access (OFDMA) communications signal to a wireless node in a licensed spectrum, and transmitting, concurrently with the transmission of the first OFDMA communications signal, a second OFDMA communications signal to the wireless node in an unlicensed spectrum. A second method includes receiving a first Orthogonal Frequency-Division Multiple Access (OFDMA) communications signal from a wireless node in a licensed spectrum, and receiving, concurrently with the reception of the first OFDMA communications signal, a second OFDMA communication signal from the wireless node in an unlicensed spectrum. A third method includes generating a periodic gating interval for a cellular downlink in an unlicensed spectrum, and synchronizing at least one boundary of the periodic gating interval with at least one boundary of a periodic frame structure associated with a primary component carrier of the cellular downlink.
Abstract:
Aspects of the present disclosure provide a subframe structure for time division duplex (TDD) carriers that can be entirely self-contained. That is, information transmitted on a TDD carrier may be grouped into subframes, where each subframe provides communication in both directions (e.g., uplink and downlink) in a suitable fashion to enable such communication without needing any further information in another subframe. For example, a single subframe may include scheduling information, data information corresponding to the scheduling information, and acknowledgment information corresponding to the data information.
Abstract:
The disclosure relates in some aspects to a scalable transmission time interval (ITO and hybrid automatic repeat request (HARQ) design. The TTI is scalable to, for example, achieve latency and/or efficiency tradeoffs for different types of traffic (e.g., mission critical traffic versus traffic with more relaxed latency requirements). In the event a longer TTI is employed, various techniques are disclosed for ensuring a fast turn-around HARQ, thereby maintaining a high level of communication performance.
Abstract:
Coding for bursty interference is discussed in which a base station receives data bits for transmission. The base station may generate code blocks including information bits and parity bits. The base station may also generate parity check code blocks including information bits corresponding to information bits of the generated code blocks. The base station may transmit the code blocks and the parity check code blocks to a mobile device to improve decoding. When errors are detected, the mobile device may decode the received code blocks using hard or soft parity checks and the parity check code blocks.
Abstract:
Techniques for transmitting data with persistent interference mitigation in a wireless communication system are described. A station (e.g., a base station or a terminal) may observe high interference and may send a request to reduce interference to interfering stations. The request may be valid for a time period covering multiple response periods. Each interfering station may grant or dismiss the request in each response period, may dismiss the request by transmitting at full power, and may grant the request by transmitting at lower than full power. The station may receive a response from each interfering station indicating grant or dismissal of the request by that interfering station in each response period. The station may estimate SINR based on the response received from each interfering station and may exchange data with another station based on the estimated SINR. Persistent interference mitigation may reduce signaling overhead and improve resource utilization and performance.
Abstract:
Methods, systems, and devices for wireless communication are described. In some examples, a wireless system may use a staggered uplink/downlink (UL/DL) format in which the symbol periods of the downlink are offset from the symbol periods of the uplink. Thus, if a user equipment (UE) receives a transmission in a first symbol period, it may decode the transmission and transmit a response in a staggered symbol period (e.g., in a UL control channel symbol period beginning one half of a symbol period after the first symbol period). A base station may then receive the response and, if it is a negative acknowledgement (NACK), retransmit during the third symbol period following the first symbol period. In another example, thin control channels may be used to reduce the round trip time between receiving a transmission and a retransmission.
Abstract:
Systems, methods, apparatuses, and computer-program products for performing dynamic bandwidth switching between control signals and data signals of differing bandwidths are disclosed. Frame formats are disclosed in which control signals are transmitted at different bandwidths than data signals. Receiver architectures for receiving the signaling formats are disclosed. A receiver can receive a relatively narrowband control signal while consuming a relatively low power and then dynamically adjust characteristics of various components to receive a data signal at a higher bandwidth while consuming a relatively higher power.
Abstract:
Shared spectrum operation is disclosed for sharing spectrum among multiple wireless deployments. Coordination procedures between and among 2nd and 3rd Tier deployments include the use of beacons transmitted by the 2nd Tier for clearing access to spectrum occupied by 3rd Tier users and multiple 3rd Tier deployments sharing resources using a group-listen before talk (LBT) protocol, rather than a per-node LBT protocol. The 2nd Tier beacon signals are transmitted to alert 3rd Tier users of their presence, which, upon detection, will leave the particular spectrum within a predetermined time. For the shared LBT protocol, the 3rd Tier deployments share the channel with each other through an LBT with random backoff, in which the start time of clear channel assessment (CCA) procedure and the random backoff values are synchronized among nodes of the same deployment.
Abstract:
Methods and apparatus for piecewise linear neuron modeling and implementing artificial neurons in an artificial nervous system based on linearized neuron models. One example method for operating an artificial neuron generally includes determining that a first state of the artificial neuron is within a first region; determining a second state of the artificial neuron based at least in part on a first set of linear equations, wherein the first set of linear equations is based at least in part on a first set of parameters corresponding to the first region; determining that the second state of the artificial neuron is within a second region; and determining a third state of the artificial neuron based at least in part on a second set of linear equations, wherein the second set of linear equations is based at least in part on a second set of parameters corresponding to the second region.
Abstract:
Coding techniques for a (e.g., OFDM) communication system capable of transmitting data on a number of “transmission channels” at different information bit rates based on the channels' achieved SNR. A base code is used in combination with common or variable puncturing to achieve different coding rates required by the transmission channels. The data (i.e., information bits) for a data transmission is encoded with the base code, and the coded bits for each channel (or group of channels with the similar transmission capabilities) are punctured to achieve the required coding rate. The coded bits may be interleaved (e.g., to combat fading and remove correlation between coded bits in each modulation symbol) prior to puncturing. The unpunctured coded bits are grouped into non-binary symbols and mapped to modulation symbols (e.g., using Gray mapping). The modulation symbol may be “pre-conditioned” and prior to transmission.