Abstract:
A method and base station in a wireless communication system are provided. The method includes transmitting, to a terminal, system information including information associated with a sub-frame configuration of multimedia broadcast multicast service single frequency network (MBSFN) sub-frames, identifying whether the transmission mode of the terminal is a first transmission mode or a second transmission mode, transmitting, to the terminal, dedicated message including configuration information of the identified transmission mode of the terminal, transmitting, to the terminal, control information in a physical downlink control channel (PDCCH) and data in a physical downlink shared channel (PDSCH) in a first sub-frame of the MBSFN sub-frames, if the terminal is configured in the first transmission mode, and transmitting, to the terminal, the control information in the PDCCH and the data in the PDSCH in a second sub-frame of a non-MBSFN sub-frames, if the terminal is configured in the second transmission mode.
Abstract:
Methods and apparatus are provided for transmitting a reference signal by a base station in a mobile communication system. The method includes generating, at the base station, information for a non zero transmission power reference signal including at least one resource element; generating, at the base station, bitmap information indicating a zero transmission power reference signal; and transmitting, at the base station, the information for the non zero transmission power reference signal and the bitmap information to a terminal.
Abstract:
A transmission/reception method and apparatus for a mobile communication system supporting uplink MIMO is provided. In the transmission method, a User Equipment (UE) transmits two transport blocks according to a predetermined number of layers and respective precoding indices, an evolve Node B (eNB) transmits, when one of the transport blocks is lost, a negative acknowledgement for the lost transport block, and the UE sets a precoding index for the lost transport block to a predetermined value to retransmit the lost transport block while maintaining the number of layers.
Abstract:
Methods and apparatuses are provided for controlling an uplink transmission power in wireless communication system. Information is received indicating a reference downlink carrier among a plurality of downlink carriers for measuring a pathloss. The pathloss of the indicated reference downlink carrier is measured. A transmit power control (TPC) command is received. The uplink transmission power is determined based on the TPC command and the measured pathloss. Data is transmitted using the determined uplink transmission power.
Abstract:
A base station includes a transmit path circuitry to scramble CRC bits of a DCI format using a C-RNTI for dynamic scheduling, and scramble the CRC bits of the DCI format using an SPS C-RNTI for semi-persistent scheduling. If C-RNTI is used, the circuitry generates a downlink transmission grant using the DCI format being a fallback format to indicate a transmit diversity transmission scheme or a single-layer beamforming scheme, and uses the DCI format being a dual-layer beamforming format to indicate a dual-DRS port transmission scheme or a single-DRS port transmission scheme. If SPS C-RNTI is used, the circuitry generates a downlink transmission grant using the DCI format being the fallback format to indicate a single-DRS port transmission scheme, and uses the DCI format being the dual-layer beamforming format to indicate a dual-DRS port transmission scheme or a single-DRS port transmission scheme.
Abstract:
Methods and apparatus are provided for transmitting and receiving data in a communication system with a plurality of antennas. A method includes informing information related to a transmission time interval for transmission based on a second type reference signal; and transmitting data based on the second type reference signal in the transmission time interval defined by the information related to the transmission time interval for transmission based on the second type reference signal. The transmission time interval defined by the information related to the transmission time interval for transmission based on the second type reference signal is located on a fixed position within a period including a plurality of transmission time intervals.
Abstract:
A transmission/reception method and apparatus for a mobile communication system supporting uplink MIMO is provided. In the transmission method, a User Equipment (UE) transmits two transport blocks according to a predetermined number of layers and respective precoding indices, an evolve Node B (eNB) transmits, when one of the transport blocks is lost, a negative acknowledgement for the lost transport block, and the UE sets a precoding index for the lost transport block to a predetermined value to retransmit the lost transport block while maintaining the number of layers.
Abstract:
Methods and apparatus are described for forming Control Channel Elements (CCEs) from Resource Element Groups (REGs) that are located in one or more Physical Resource Block (PRB) pairs from a set of PRB pairs, for determining a first symbol in a Transmission Time Interval (TTI) for a Physical Downlink Shared Channel (PDSCH), and for determining whether the PDSCH includes all PRB pairs indicated by a respective PDCCH scheduling the PDSCH.
Abstract:
An apparatus and method are provided for feeding back channel quality information and performing scheduling using the fed-back channel quality information in a wireless communication system based on Orthogonal Frequency Division Multiple Access (OFDMA). In the OFDMA wireless communication system, forward performance degradation due to a decrease in an amount of reverse channel quality information is reduced, and also an increase in the reverse load due to channel quality information feedback is suppressed. A base station controls power of a physical channel using information fed back from a mobile station. In a method for feeding back channel quality information from the mobile station, sub-band-by-sub-band channel quality information is measured and channel-by-channel quality information of a number of channels is transmitted in order of sub-bands of better channel quality information. Average channel quality information for a total band is measured and transmitted.
Abstract:
A user equipment (UE) in a wireless network having two-dimensional antenna systems performs a method of codebook sampling. The method includes receiving from an eNodeB (eNB) an indication of a restricted subset M of vertical precoding matrices, wherein M is less than a total number of vertical precoding matrices N in a codebook, the codebook comprising a plurality of vertical precoding matrices and horizontal precoding matrices. The method also includes feeding back vertical precoding matrix indicators (V-PMI) to the eNB based on the restricted subset of vertical precoding matrices.