摘要:
In one embodiment an anti-fuse structure is provided that includes a first dielectric material having at least a first anti-fuse region and a second anti-fuse region, wherein at least one of the anti-fuse regions includes a conductive region embedded within the first dielectric material. The anti-fuse structure further includes a first diamond like carbon layer having a first conductivity located on at least the first dielectric material in the first anti-fuse region and a second diamond like carbon layer having a second conductivity located on at least the first dielectric material in the second anti-fuse region. In this embodiment, the second conductivity is different from the first conductivity and the first diamond like carbon layer and the second diamond like carbon layer have the same thickness. The anti-fuse structure also includes a second dielectric material located atop the first and second diamond like carbon layers. The second dielectric material includes at least one conductively filled region embedded therein.
摘要:
An interconnect structure which includes a plating seed layer that has enhanced conductive material, preferably, Cu, diffusion properties is provided that eliminates the need for utilizing separate diffusion and seed layers. Specifically, the present invention provides an oxygen/nitrogen transition region within a plating seed layer for interconnect metal diffusion enhancement. The plating seed layer may include Ru, Ir or alloys thereof, and the interconnect conductive material may include Cu, Al, AlCu, W, Ag, Au and the like. Preferably, the interconnect conductive material is Cu or AlCu. In more specific terms, the present invention provides a single seeding layer which includes an oxygen/nitrogen transition region sandwiched between top and bottom seed regions. The presence of the oxygen/nitrogen transition region within the plating seed layer dramatically enhances the diffusion barrier resistance of the plating seed.
摘要:
A method for fabricating an integrated circuit comprising an electromigration barrier in a line of the integrated circuit includes forming a spacer; forming a segmented line adjacent to opposing sides of the spacer, the segmented line formed from a first conductive material; removing the spacer to form an empty line break; and filling the empty line break with a second conductive material to form an electromigration barrier that isolates electromigration effects within individual segments of the segmented line. An integrated circuit comprising an electromigration barrier includes a line, the line comprising a first conductive material, the line further comprising a plurality of line segments separated by one or more electromigration barriers, wherein the one or more electromigration barriers comprise a second conductive material that isolates electromigration effects within individual segments of the line.
摘要:
Methods for via gouging and a related semiconductor structure are disclosed. In one embodiment, the method includes forming a via opening in a dielectric material, the via opening aligned with a conductor; forming a protective coating over the dielectric material and in the via opening; performing via gouging; and removing the protective coating over horizontal surfaces of the dielectric material. A semiconductor structure may include a via having an interface with a conductor, the interface including a three-dimensionally shaped region extending into and past a surface of the conductor, wherein an outer edge of the three-dimensionally shaped region is distanced from an outermost surface of the via.
摘要:
An interconnect structure of the single or dual damascene type and a method of forming the same, which substantially reduces the electromigration problem that is exhibited by prior art interconnect structures, are provided. In accordance with the present invention, a grain growth promotion layer, which promotes the formation of a conductive region within the interconnect structure that has a bamboo microstructure and an average grain size of larger than 0.05 microns is utilized. The inventive structure has improved performance and reliability.
摘要:
A composition that may be used for cleaning a metal containing conductor layer, such as a copper containing conductor layer, within a microelectronic structure includes an aqueous acid, along with an oxidant material and a passivant material contained within the aqueous acid. The composition does not include an abrasive material. The composition is particularly useful for cleaning a residue from a copper containing conductor layer and an adjoining dielectric layer that provides an aperture for accessing the copper containing conductor layer within a microelectronic structure.
摘要:
A method and structure for an integrated via and line lithography followed by integrated via and line etch. A two-layered, negative resist based lithography is used to generate a dual damascene structure in the photoresist which is subsequently transferred into the underlying ILD using an lithography with an integrated RIE. A method is also provided to correct any misalignment between the via and trench during photolithography steps which would reduce the size of the via opening and impact the via resistance.
摘要:
A conductor-dielectric interconnect structure is fabricated by providing a structure comprising a dielectric layer having a patterned feature therein; depositing a plating seed layer on the dielectric layer in the patterned feature; depositing a sacrificial seed layer on the plating seed layer in the via; reducing the thickness of the sacrificial seed layer by reverse plating; and plating a conductive metal on the sacrificial seed layer in the patterned feature. Also provided is a dielectric layer having a via therein; a plating seed layer on the dielectric layer in the patterned feature; and a discontinuous sacrificial seed layer located in the patterned feature.
摘要:
A method comprises depositing a dielectric film layer, a hard mask layer, and a patterned photo resist layer on a substrate. The method further includes selectively etching the dielectric film layer to form sub-lithographic features by reactive ion etch processing and depositing a barrier metal layer and a copper layer. The method further includes etching the barrier metal layer and hard mask layer by gas cluster ion beam (GCIB) processing.
摘要:
An electronic device may include a substrate, a buried oxide (BOX) layer overlying the substrate, at least one semiconductor device overlying the BOX layer, and at least one shallow trench isolation (STI) region in the substrate and adjacent the at least one semiconductor device. The at least one STI region defines a sidewall surface with the substrate and may include an oxide layer lining a bottom portion of the sidewall surface, a nitride layer lining a top portion of the sidewall surface above the bottom portion, and an insulating material within the nitride and oxide layers.