Abstract:
A traction device has a casing, a drum mounted in the casing for undergoing rotation, and a traction rope having a first end connected to the drum and a second end extending through an opening in the casing. A roller is disposed in the casing for guiding the traction rope and a biasing member for resiliently biasing the traction rope onto the roller. A spring has a first end connected to the drum for urging the drum in a direction of rewinding the traction rope on the drum. A rope coupling is connected to the second end of the traction rope for preventing the second end of the traction rope from passing through the opening of the casing. A tension meter is disposed between the traction rope and the rope coupling for measuring a tension of the traction rope. A shaft is supported by the casing for undergoing rotation relative to the drum and is connected to a second end of the spring. A ratchet mechanism rotates the shaft to apply an initial load to the spring.
Abstract:
A thin film transistor (TFT) which may be used as a pixel drive element in an active matrix LCD display includes a pair of side wall spacers adjacent to the opposing side walls of its gate electrode. The side wall spacers provide the gate electrode with a substantially rectangular cross section, such that the gate electrode has a substantially constant thermal conductivity over its area. The TFT has a uniform device characteristic.
Abstract:
A novel fluorinated hydrocarbon compound containing an oxygen or sulfur atom in its molecule, produced by the nucleophilic reaction of a fluorine compound with a hydrocarbon compound. This compound is useful as a lubricant for various applications and particularly excellent as an oil for refrigerators wherein hydrochlorofluorocarbon is used as the refrigerant and as a magnetic recording medium lubricant.
Abstract:
Compound fine particles include inorganic fine particles and an organic polymer bound to surfaces of the inorganic fine particles, and have an average particle diameter of 5 to 200 nm and a particle diameter variation coefficient of 50% or less. The compound fine particles are obtainable by hydrolyzing and condensing an organic polymer, wherein the organic polymer has, per molecule, at least one polysiloxane group containing at least one Si--OR.sup.1 group, wherein R.sup.1 denotes a hydrogen atom, an unsubstituted or substituted alkyl group, or an unsubstituted or substituted acyl group. A compound fine particle dispersion includes the compound fine particles and a dispersion medium. A composition for forming a film includes this dispersion.
Abstract:
An image apparatus is provided with a bottom take-out type automatic paper feeding mechanism. Documents are sequentially taken out from a lowermost document by coaction of a paper feeding roller and a document separation pad which is elastically pressed against the paper feeding roller. A hopper is provided on which the documents are placed by stacking. Projections are provided on a document placement surface of the hopper or a paper feeding passage. The projections prevent the documents from being adhered to the hopper which has been electrostatically charged.
Abstract:
An image reading apparatus has a reading unit including a light source lamp mounted on a unit frame arranged in a document reading portion. The image reading apparatus comprised as a lamp frame supporting the light source lamp. The lamp frame has a pin. Projections are pivotally arranged on a back side surface of the lamp frame at an interval in a longitudinal direction of the light source lamp. An upper end of the projections has a grip for grasping. One of the projections has an elongated hole for receiving the pin. The pin regulates an pivoting angle of the projection. Slit holes, in which the projections are fitted, are formed in the unit frame.
Abstract:
A paper feed roller (5) is divided into a first roller (5a) and a second roller (5b); a slit (58) through which about 10 to 20 sheets of documents can pass is formed between the first roller and a gate plate (57) opposite to this; and the paper fed out therefrom is fed out to a space between the second roller (5b) and a separation pad (7) in contact with this.Also, there is adopted a construction in which the pressing force of a paper conveyance spring is transformed by a slide cam sliding in a direction parallel to the paper feed roller; and the paper width detection sensor is assembled by a fitting construction.
Abstract:
In a method of fabricating a semiconductor device according to the present invention, a semiconductor film is formed on a substrate, and an insulator film is formed so as to cover the semiconductor film. Then, a dopant source is arranged on the insulator film and then, a region for electrical contact is irradiated with a high-energy beam through the dopant source. Consequently, the insulator film and the semiconductor film in the irradiated region are melted, to form a polycrystalline contact region having impurities supplied from the dopant source doped therein. Thus, the high-energy beam is irradiated to the region for electrical contact through the dopant source to form the polycrystalline contact region, thereby to make it possible to omit the patterning process such as etching processing for providing a contact hole.