摘要:
A nanoparticle for conductive ink including a ferromagnetic core and a conductive layer surrounding the ferromagnetic core. The ferromagnetic core is 5 to 40 parts by weight, per 100 parts by weight of the nanoparticles. The conductive ink provides electrical reliability by allowing a uniform distribution of nanoparticles in ejected ink and prevents the coffee stain phenomenon and migration.
摘要:
Metal nanoparticles, containing a copper core and thin layer of precious metals enclosing the core to prevent oxidization of copper, in which manufacturing the metal nanoparticles is economical efficiency because of increased copper content and since such metal nanoparticles contain a metal having high electrical conductivity such as silver for a thin layer, they can form a wiring having better conductivity than copper and there is little concern that silver migration may occur.
摘要:
A printed circuit board and a method of manufacturing the printed circuit board are disclosed. The method of manufacturing the printed circuit board in accordance with an embodiment of the present invention can include: forming an opaque conductive pattern on one side of a transparent insulation layer; forming a photosensitive insulation layer on the transparent insulation layer such that the conductive pattern is covered; hardening the photosensitive insulation layer excluding an area covering the conductive pattern by irradiating light on the other side of the transparent insulation layer; and forming an opening on the photosensitive insulation layer by removing the area of the photosensitive insulation layer covering the conductive pattern such that the conductive pattern is exposed.
摘要:
The present invention relates to an apparatus and a method of manufacturing metal nanoparticles, and more particularly to an apparatus including: a precursor supplying part which supplies a precursor solution of metal nanoparticles; a first heating part which is connected with the precursor supplying part, includes a reactor channel having a diameter of 1 to 50 mm, and is heated to the temperature range where any particle is not produced; a second heating part which is connected with the first heating part, includes a reactor channel having a diameter of 1 to 50 mm, and is heated to the temperature range where particles are produced; and a cooler which is connected with the second heating part and collects and cools metal nanoparticles produced at the second heating part which allows continuous mass production of metal nanoparticles.
摘要:
A conductive ink composition for inkjet printing, more particularly to a conductive ink composition for inkjet printing, which includes 30 to 85 parts by weight of metal nanoparticles, 10 to 60 parts by weight of an organic solvent, 10 to 30 parts by weight of a humectant, the humectant made of a diol or glycol base compound, and 0.1 to 10 parts by weight of an ethylene glycol-based ether compound additive for adjusting viscosity. The ink composition may be optimized, such that the viscosity of the ink may be adjusted while maintaining a high concentration of metal, when forming wiring using an inkjet device, for improved flow and ejection properties of the ink.
摘要:
A method of manufacturing nickel nanoparticles and nickel nanoparticles thus produced, having superior dispersion stability and smooth surface, by reducing after forming nickel-hydrazine complex in a reverse microemulsion, where the method includes forming an aqueous solution including nickel precursor, surfactant, and hydrophobic solvent, forming nickel-hydrazine complex by adding a reducing agent that includes hydrazine to the mixture, and producing nickel nanoparticles by adding a reducing agent to the mixture that includes the nickel-hydrazine complex.
摘要:
Disclosed are a cell unit for a fuel cell and a method for manufacturing the same. The cell unit for a fuel cell can include an electrolyte membrane; an electrode unit, comprising an anode being formed on one surface of the electrolyte membrane and a cathode being formed on the other surface of the electrolyte membrane; a current collector, being stacked on the electrode unit to be electrically connected to the electrode unit; and a conductive layer, being interposed between the electrode unit and the current collector to reduce a contact resistance between the electrode unit and the current collector. With the present invention, the cell unit for a fuel cell can reduce contact resistance between the anode and the cathode and the current collector. Accordingly, it can be possible to reduce the overall size of the fuel cell by reducing the required thickness of the end plate.
摘要:
The present invention provides metal nanoparticles, containing copper core and thin layer of precious metals enclosing the core to prevent oxidization of copper, in which manufacturing the metal nanoparticles is economical efficiency because of increased copper content and since such metal nanoparticles contain a metal having high electrical conductivity such as silver for a thin layer, they can form a wiring having better conductivity than copper and there is little concern that silver migration may occur.
摘要:
A cell unit for a fuel cell and a method for manufacturing the cell unit for a fuel cell are disclosed. The cell unit for a fuel cell can include an electrolyte membrane, an electrode unit that includes an anode formed on one side of the electrolyte membrane and a cathode formed on the other side of the electrolyte membrane, and a porous current collector formed by coating a conductive material onto the porous surfaces of the electrode unit.With the present invention, it can be possible to reduce the contact resistance between the electrodes (the anode and the cathode), and their respective current collector, to thereby increase current collection efficiency and it can also be possible to make the thickness of the end plates thinner than a conventional design without sacrificing performance, to thereby decrease the overall size of a fuel cell.
摘要:
The present invention relates to a method for manufacturing nickel nanoparticles and more particularly to a method including preparing a mixture solution by adding a reducing agent, a dispersing agent and a nickel salt to a polyol; stirring and heating the mixture solution; and producing nickel nanoparticles by reacting the mixture solution, so that it allows mass production of nickel nanoparticles having uniformity of size 30 to 50 nm and high dispersibility.