Abstract:
An apparatus is provided to generate a gas by mixing chemicals with water. Typically, the production of gas, particularly oxygen, by combining water with powders and other dry chemicals has not been widely employed. There have existed a number of preexisting barriers such as undesirable flow rates and yields. However, by utilizing multiple reaction chambers the flow rates and yields can be more precisely tailored for a variety of situations that may call for particular flow rates and yields. Additionally, the use of the dry chemicals would allow for a long self-life allowing the apparatus to be particularly useful in emergency situations.
Abstract:
A system for purging high purity interfaces connecting a high purity chemical container to process lines comprises a first purging manifold, connected at one end to a first adapter manifold extending from the high purity chemical container, and connected at the other end either to a process tool, to a second high purity container, to a source of gas, or to a source of vacuum on one side, or to a source of vent or to a source of vacuum on the other side; and a second purging manifold connecting the second adapter manifold either to a source of push gas, a source of purge gas, or a source of vacuum; or to a source of vent. A related method comprises blowing purge gas through both the first and the second purging manifolds, and, optionally, applying vacuum to both purging manifolds.
Abstract:
A controlled-flow microwave instrument for chemical synthesis that includes heterogeneous or highly viscous materials includes a fluid reservoir for supplying or receiving fluids, a fluid pump in fluid communication with the reservoir for pumping fluids to or from the reservoir, a microwave transparent reaction vessel in fluid communication with the pump for supplying or receiving fluids to or from the pump and the reservoir, a pressure sensor in fluid communication with the reservoir and the vessel for measuring the pressure of fluids in the instrument at the sensor, and a processor in signal communication with the pressure sensor and the pump for controlling the pump and the flow of fluids in the instrument based at least in part on the pressure measured at the sensor.
Abstract:
A gas-generating apparatus includes a reaction chamber having a first reactant, a reservoir having an optional second reactant, and a self-regulated flow control device. The self-regulated flow control device stops the flow of reactant from the reservoir to the reaction chamber when the pressure of the reaction chamber reaches a predetermined level. Methods of operating the gas-generated apparatus and the self-regulated flow control device, including the cycling of a shut-off valve of the gas-generated apparatus and the cycling of the self-regulated flow control device are also described.
Abstract:
An apparatus is provided to generate a gas by mixing chemicals with water. Typically, the production of gas, particularly oxygen, by combining water with powders and other dry chemicals has not been widely employed. There have existed a number of preexisting barriers such as undesirable flow rates and yields. However, by utilizing multiple reaction chambers the flow rates and yields can be more precisely tailored for a variety of situations that may call for particular flow rates and yields. Additionally, the use of the dry chemicals would allow for a long self-life allowing the apparatus to be particularly useful in emergency situations.
Abstract:
An apparatus is provided to generate a gas by mixing chemicals with water. Typically, the production of gas, particularly oxygen, by combining water with powders and other dry chemicals has not been widely employed. There have existed a number of preexisting barriers such as undesirable flow rates and yields. However, by utilizing multiple reaction chambers the flow rates and yields can be more precisely tailored for a variety of situations that may call for particular flow rates and yields. Additionally, the use of the dry chemicals would allow for a long self-life allowing the apparatus to be particularly useful in emergency situations.
Abstract:
Liquid chemical delivery systems are provided which include a liquid chemical storage canister, a pressurized gas source that feeds a pressurized gas into the storage canister, a vaporizer that may be used to vaporize the liquid chemical supplied from the storage canister, a delivery line that connects the storage canister to the vaporizer, a liquid mass flow controller that controls the flow rate of the liquid chemical through the delivery line, a reaction chamber that is connected to the vaporizer, and a liquid chemical recycling element that collects at least some of the chemical flowing through the system during periods when the liquid chemical delivery system is isolated from the reaction chamber.
Abstract:
A system and method for providing process chemicals. The system includes a housing comprising a functional component positioned in a first compartment, a control module positioned in a second compartment and at least one connecting line positioned in a third compartment. At least one compartment is positioned in a defined location in the housing. Modules may be removable received in their respective compartments.
Abstract:
The invention is a hydrogen generator for supplying hydrogen to the anode of a fuel cell and electrons to the fuel cell electrical circuit. The hydrogen generator employs a consumable electrode comprising an alkali metal which is brought into contact with an aqueous solution of its hydroxide liberating hydrogen. The hydrogen generator operates as an alkaline cell electrode emersed in the electrolyte that is continuously being formed by the oxidation of the alkali metal within the electrode by its reaction in the electrolyte with the cycled water produced at the cathode of the fuel cell. The current flow within the hydrogen generator internal circuit of the reaction chamber is approximately equivalent to the feed rate of the consumable electrode into the electrolyte and the quantity of hydrogen formed is proportional to the equivalent weight of the water reacted.
Abstract:
A system of two fuel ampoules that can deliver a reactant by diffusion through one of the ampoule walls to the other, such that when said reactant enters the second ampoule, it reacts with another reactant in said second ampoule, making hydrogen gas as a product. Both ampoules are stored in a fuel impermeable container. These ampoules used with small low power fuel cells which need a steady controlled uniform delivery of vaporous fuel such hydrogen and alcohols. This fueling system provides a simple safe fuel interactive system for small hydrogen fuel cells that prevents inadvertent hydrogen production by any single ampoule being exposed to water or typical consumer environments.