摘要:
A system and methods for transprojection of geometry data acquired by a coordinate measuring machine (CMM). The CMM acquires geometry data corresponding to 3D coordinate measurements collected by a measuring probe that are transformed into scaled 2D data that is transprojected upon various digital object image views captured by a camera. The transprojection process can utilize stored image and coordinate information or perform live transprojection viewing capabilities in both still image and video modes.
摘要:
A polarizing point-diffraction plate is used to produce common-path test and reference wavefronts with mutually orthogonal polarizations from an input wavefront. The common-path test and reference wavefronts are collimated, phase shifted and interfered, and the resulting interferograms are imaged on a detector. The interference patterns are then processed using conventional algorithms to characterize the input light wavefront.
摘要:
An apparatus and a method of measuring an optical path difference in a sensing interferometer. Light from a source is directed in the sensing interferometer. The light reflected from the sensing interferometer is splitted into first and second beams respectively directed into two reference interferometers having optical path differences greater than the coherence length of the source and such that the optical signals are in quadrature. The intensities of the light transmitted by the reference interferometers and recombined light reflected from the reference interferometers are detected for measuring the optical path difference in the sensing interferometer. Additional light sources allow for correction of internal perturbations and absolute measurement of the optical path difference in the sensing interferometer.
摘要:
A method of forming an interferometer film for an interferometer sensor comprises forming a parylene polymer layer (8) of substantially uniform thickness directly on an interferometer substrate (4;45), the layer forming the interferometer film. Since the interferometer film (8) formed directly onto the surface of the interferometer substrate, there is improved conformity between the two surfaces at the interface between the polymer layer and the substrate and improved uniformity in the thickness of the film.
摘要:
A method and apparatus for performing optical microscopy in one to three dimensions employs a spectral self-interference fluorescent microscopy technique that includes providing at least one fluorescent microscopy sample (220a, 220b), at least one objective lens (201), and a reflecting surface (204). The fluorescent sample is disposed between the objective lens and the reflecting surface, the distance (d1, d2) from the sample to the reflecting surface is several to several tens times an excitation wavelength. Excitation light (216) causes the fluorescent sample to emit light (214), at least a portion (214b) of which is reflected by the reflecting surface. The objective lens collects both the reflected light and the light emitted directly by the fluorescent sample (214a). The direct and reflected light interferences causing spectral oscillations in the emission spectrum. The periodicity and the peak wavelengths of the emission spectrum are then spectroscopically analyzed to determine the optical path length between the fluorescent sample and the reflecting surface.
摘要:
An interferometer is integrated on an optical chip. The optical chip is formed on a layer of silicon separated from a substrate by a layer of insulating material. The optical chip includes an integrated fiber connector for connecting the optical chip to one or more optical fibers. The fiber connector includes a groove formed in the substrate for receiving an optical fiber and a waveguide for transmitting light to or from the fiber connector. The waveguide includes rib waveguides formed in the layer of silicon and at least one phase modulator for altering the phase of light traveling along one of the rib waveguides. This arrangement forms an interferometer in which light transmitted along different optical paths can be combined and the effective path length of at least one of the optical paths can be altered by the phase modulator.
摘要:
This invention is a quasi-static fiber pressure sensor using self-referenced interferometry based on a broadband semiconductor source which probes the pressure plate deflection within a Fabry-Perot cavity where phase is demodulated with a dual grating spectrometer providing real-time, high resolution remote measurement of pressure using optical interrogation of a deflecting pressure plate. This technique yields absolute gap measurement in real time over a wide range of gap lengths with nanometer resolution. By tailoring the pressure plate design to cover the range of gaps and deflection that can be resolved, pressure sensing with psi resolution can be obtained in a kpsig pressure range.
摘要:
A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically.
摘要:
A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically.
摘要:
A linear measurement interferometer 10 with a measurement axis directed toward a surface of a work piece 17 has a light source 11, a detection system 12, and a beam splitter 13 arranged to divide light from the source into test beams 21, 22, and 34 and reference beams 23, 24, and 33 that travel test and reference paths and recombine for detection by the detection system. Beam splitter 13 is arranged on the measurement axis with the work piece surface on one side of the beam splitter and the test beam path straddling the measurement axis on the opposite side of the beam splitter. A test beam retroreflector 25 mounted in the test path on the measurement axis reflects back the test beam from beam splitter 13 and is movable along the measurement axis without causing abbe error. A probe or focusing lens 15 movable along the measurement axis for measuring the work piece surface is interconnected with the test beam retroreflector 25 for movement together to determine a distance moved in measuring the work piece surface. A preferred way of arranging beam splitter 13 on the measurement axis while accommodating a probe is to bore a central aperture 20 in the beam splitter allowing the probe to pass through the beam splitter.