Abstract:
In optical filter systems and optical transmission systems, an optical filter compresses data into and/or derives data from a light signal. The filter way weight an incident light signal by wavelength over a predetermined wavelength range according to a predetermined function so that the filter performs the dot product of the light signal and the function.
Abstract:
A method and apparatus for performing optical microscopy in one to three dimensions employs a spectral self-interference fluorescent microscopy technique that includes providing at least one fluorescent microscopy sample (220a, 220b), at least one objective lens (201), and a reflecting surface (204). The fluorescent sample is disposed between the objective lens and the reflecting surface, the distance (d1, d2) from the sample to the reflecting surface is several to several tens times an excitation wavelength. Excitation light (216) causes the fluorescent sample to emit light (214), at least a portion (214b) of which is reflected by the reflecting surface. The objective lens collects both the reflected light and the light emitted directly by the fluorescent sample (214a). The direct and reflected light interferences causing spectral oscillations in the emission spectrum. The periodicity and the peak wavelengths of the emission spectrum are then spectroscopically analyzed to determine the optical path length between the fluorescent sample and the reflecting surface.
Abstract:
A probe-target reaction is made more recognizable by the provision of a mass-enhancing and/or evanescent-field-perturbing amplifier element which reacts uniquely with and binds to the probe-target pair to provide increased mass. Where the probe-target pair is hybridized dsDNA, a suitable mass-enhancing amplifier is anti-double stranded DNA mouse IgM. In examples with sufficient sequence pairs in the probe-target combination, a sequence-specific minor-groove-binding polyamide can be used that carries biotin which can be amplified by streptavidin in a suitable carrier. In a preferred embodiment, a plurality of probes are immobilized at the sites of a microarray, each probe being specific to a different target. Optics utilizing total internal reflection are described for observing perturbation of the evanescent field.
Abstract:
A linear positioning apparatus includes an intermediate portion having an axis, and first and second end portions mounted with flexure legs thereto. The flexure legs accommodate motion of the intermediate portion relative to the end portions along the axis, but inhibit motion of the intermediate portion relative to the end portions in directions not parallel to the axis. The apparatus can accommodate forces having off-axis components, and produce motion that comprises substantially no off-axis component. The apparatus is useful in, for example, optical systems where precise linear motion is required.
Abstract:
A method for taking a spatially resolved spectrum, in particular an infrared (IR) spectrum, of a sample by means of a Fourier-transform (FT)-spectrometer, is described wherein light emitted by a light source is fed to an interferometer, directed onto the sample and detected by an array-detector, wherein a movable reflector of the interferometer is displaced over a distance s and the array-detector is read out at a number n of predetermined discrete way points s1, . . . , sn of the distance s, respectively. When the movable reflector is displaced over the distance s, the array-detector is first read out at respective non-adjacent way points sd separated by at least one respective intermediate way point si, and that the movable reflector is displaced over the distance s at least twice, wherein the array-detector is read out at the way points si upon a second or further repeated displacement over the distance s.
Abstract:
A modulated reflectance measurement system includes two lasers for generating a probe beam and an intensity modulated pump beam. The probe beam is in the visible spectrum and the pump beam is in the ultra-violet spectrum. The pump and probe beams are joined into a collinear beam and focused by an objective lens onto a sample. Reflected energy returns through the objective and is redirected by a beam splitter to a detector. A lock-in amplifier converts the output of the detector to produce quadrature (Q) and in-phase (I) signals for analysis. A processor uses the Q and/or I signals to analyze the sample.
Abstract:
A quasi-monochromatic light beam carrier for a particular telecommunication channel is likely to experience drift because of age, temperature, or other factors, and may cause the centroid wavelength of the carrier to shift. Temperature adjustments by wavelength lockers to compensate for drift on one channel may affect the performance of other channels. Embodiments of the present invention couple a quasi-monochromatic light beam through a substrate-based grating, diffract the light beam from the edge of the substrate to free space, and detect the light beam from free space at a position detector to determine the centroid wavelength based on a position of the light beam incident on the detector. The diffracted light beam may be reflected within the substrate a number of times prior to exiting the substrate towards the detector.
Abstract:
The present invention is a method and an apparatus for identifying and quantifying components in an effluent stream from an ammoxidation reactor, the apparatus comprising a microprocessor; and a Fourier Transform infrared spectrometer having a sample cell through which may flow a portion of the effluent stream, an infrared source to emit infrared radiation and pass the infrared radiation through the effluent stream, an infrared detector to detect transmitted infrared radiation at the selected infrared wavelengths and to generate absorbance data due to absorbance of the infrared radiation by the components, wherein each of the components absorbs infrared radiation at one or more of the infrared wavelengths, and an output apparatus to provide the absorbance data to the microprocessor; wherein the microprocessor is programmed to identify and quantify each of the plurality of components based upon the absorbance data and calibration data, the calibration data being obtained from recovery run analyses and calibration analyses in the sample cell. The method may be applied to utilize the apparatus to provide real-time control of the operation of an ammoxidation reactor, based on the analytical results obtained by the FT-IR spectrometer and the calibration model developed therefor.
Abstract:
An etalon comprising a first plate and a second plate positioned in parallel to one another and separated by a given distance, a single block spacer extending the given distance between the first plate and the second plate, and the single block spacer defining a chamber extending the given distance between the first plate and the second plate. A hermetically sealed etalon is also disclosed comprising a first plate and a second plate positioned in parallel to one another and separated by a given distance, a single block spacer extending the given distance between the first plate and the second plate, and the single block spacer defining a chamber extending the given distance between the first plate and the second plate, with the block spacer defining a first perimeter surrounding the chamber adjacent the first plate and a second perimeter surrounding the chamber adjacent the second plate, wherein the single block spacer surrounds the chamber along the given distance between the first plate and the second plate, and further wherein the single block spacer forms a first seal around the first perimeter adjacent the first plate and the single block spacer forms a second seal around the second perimeter adjacent the second plate, whereby to form the hermetically sealed etalon.
Abstract:
A light L from a light source 3 is transmitted through a sample cell S and is made incident into a spectroscopic portion 13. The spectroscopic portion 13 comprises interference filters 31-39 which transmit light components different in wavelengths and photodiodes 41-49 corresponding to the respective interference filters. Dielectric films to compose an interference filter have relatively satisfactory features to reflect a light component of wavelengths other than a light component of a wavelength to be transmitted. At each interference filter, an incident light is split into a light component to be transmitted and a light component to be reflected. By making the reflected light component into an incident light into a following-order interference filter, light components of nine wavelength types are detected.