Abstract:
Olefin polymer composition comprising (by weight, unless otherwise specified): A) 60-95% of a propylene homopolymer or copoloymer having a Polydispersity Index (P.I.) value of from 4.6 to 10 and a content of isotactic pentads (mmmm), measured by 13C NMR on the fraction insoluble in xylene at 25° C., higher than 98 molar, B) 5-40% of a copolymer of ethylene containing from 40% to 70% of propylene or C4-C10 α-olefins) or of combinations thereof, and optionally minor proportions of a diene; said composition having a Temperature Rising Elution Fractionation (TREF) profile, obtained by fractionation in xylene and collection of fractions at temperatures of 40° C., 80° C. and 90° C., in which the ethylene content Y of the fraction collected at 90° C. satisfies the following relation (1): Y≦−0.8+0.035X+0.0091X2 wherein X is the ethylene content of the fraction collected at 40° C. and both X and Y are expressed in percent by weight, and a value of intrinsic viscosity [η] of the fraction soluble in xylene at 25° C. of from 1.8 to 4.2 dl/g.
Abstract:
Adducts are provided comprising MgCl2, ethanol and a Lewis base (LB), said compounds being present in molar ratios defined by the following formula MgCl2.(EtOH)n(LB)p in which n is from 2 to 6 and p has values satisfying the following equation p/(n+p)≦0.1. The said adducts can be used as precursor in the preparation of high activity ZN catalysts.
Abstract:
Process for the preparation of a solid catalyst component for the polymerization of olefins, the process comprising the steps of:—continuously contacting solid particles of a MgCl2.mROH adduct, wherein 0.5
Abstract:
Films especially suitable for the packaging of fresh foodstuff, like salad and vegetables, due to their high permeability to oxygen, carbon dioxide and water vapour, are obtained from polyolefin composition comprising (percentage by weight): A) 5% to 80% of a butene-1 polymer or polymer composition containing from 0% to 25% of one or more comonomers selected from ethylene and alpha-olefins different from 1-butene, provided that, when ethylene only is present as comonomer, the amount of ethylene is higher than 4% and a copolymer fraction (i) containing at least 6.2% of ethylene is present, said polymer or polymer composition having a content of fraction soluble in xylene at 0° C. of from 50% to 100% and a Flexural Modulus (measured according to ISO 178) from 15 to 300 MPa; B) 20% to 95% of a propylene homopolymer or copolymer having a content of fraction insoluble in xylene at room temperature of 93% or more.
Abstract:
Butene-1 (co)polymers characterized by the following properties: content of butene-1 units in the form of isotactic pentads (mmmm) from 25 to 55%; intrinsic viscosity [η] measured in tetraline at 135° C. from 1 to 3 dL/g; content of xylene insoluble fraction at 0° C. from 3 to 60%; and a ratio ES2/ES1>1, where ES1 is the boiling diethyl ether soluble fraction determined on the polymer as such and ES2 is the boiling diethyl ether soluble fraction determined after milling the polymer. The butene-1 (co)polymers show a good balance between processability and elastomeric behavior.
Abstract translation:丁烯-1(共)聚合物,其特征在于以下性质:全同立构五单元形式的丁烯-1单元的含量(mmmm)为25至55%; 在135℃的四氢化萘中测量的特性粘度η为1至3dL / g; 0℃下二甲苯不溶级分含量为3〜60%; 和ES ES 2 / ES 1比1,其中ES 1是在聚合物上测定的沸腾二乙醚可溶级分,ES为ES 沸点二乙醚可溶级分是在研磨聚合物之后测定的。 丁烯-1(共)聚合物在加工性和弹性体性能之间显示出良好的平衡。
Abstract:
A solution process for polymerizing one or more α-olefins of the formula CH2═CHR, where R is H or an alkyl radical C1-C18, to produce a polymer that is soluble in the reaction medium, comprising the steps of: continuously polymerizing in a liquid phase the α-olefin in the presence of a catalyst system based on a transition metal compound to obtain a solution of polymer in the reaction medium; the polymeric solution obtained from step a) is then mixed in one or more mixing stages with an aqueous mixture comprising one or more organic compounds having at least a hydroxy or epoxy group, said aqueous mixture having a dynamic viscosity at 30° C. higher than 50 cP (centiPoise).
Abstract:
Method for monitoring the velocity of growing polymer particles flowing in a two-phase stream during a polymerization process, said method comprising measuring the degree of attenuation in the propagation of light in said two-phase stream by means of a photometric instrument, said photometric instrument comprising: one or more transmitting optical waveguides connecting one or more light sources to said two-phase stream, one or more receiving optical waveguides connecting said two-phase stream to a light detector.
Abstract:
Process for preparing a broad molecular weight polyethylene by polymerizing ethylene in the presence of a polymerization catalyst, the process comprising the following steps, in any mutual order: a) polymerizing ethylene, optionally together with one or more α-olefinic comonomers having from 3 to 12 carbon atoms, in a gas-phase reactor in the presence of hydrogen, b) copolymerizing ethylene with one or more α-olefinic comonomers having from 3 to 12 carbon atoms in another gas-phase reactor in the presence of an amount of hydrogen less than step a), where in at least one of said gas-phase reactors the growing polymer particles flow upward through a first polymerization zone under fast fluidization or transport conditions, leave said first polymerization zone and enter a second polymerization zone through which they flow downward under the action of gravity.
Abstract:
A process for making an improved soft olefin polymer material comprising: a) preparing a polymer mixture comprising: (I) about 70 to about 95% by weight of a heterophasic polyolefin; (II) about 5 to about 30% by weight of a reactive, peroxide-containing olefin polymer; and (III) optionally, about 1 to about 10% by weight of a co-agent having a molecular structure containing at least two aliphatic unsaturated carbon-carbon bonds; wherein (I)+(II)+(III) equals 100%; b) extruding or compounding in molten state the polymer mixture, thereby producing a melt mixture; and optionally c) pelletizing the melt mixture.
Abstract:
A stretched polyolefin filament, having elongation at break EB of equal to or higher than 80% and a ratio SR/EB, where SR is the stretching ratio, of equal to or lower than 45, made from or containing: a polyolefin composition (I), made from or containing A) from 40% to 78% by weight of a propylene polymer; B) from 22% to 60% by weight of a butene-1 polymer having: 1) a flexural modulus value from 100 to 800 MPa; 2) a ratio MI10/MI2 of from 20 to 40; and 3) a content of fraction soluble in xylene at 0° C. of 15% by weight or lower; wherein the amounts of A) and B) are referred to the total weight of A)+B).