Abstract:
Provided is a semiconductor memory device including a sub-word-line driving circuit capable of reducing an amount of leakage current due to coupling. The semiconductor memory device includes a word-line enable signal generating circuit and a sub-word-line driving circuit. The sub-word-line driving circuit provides a pull-down current path between a selected word line and ground for a pulse type period of time in a precharge mode following an active mode for the selected word line, generates a word line driving signal on the basis of a main word line driving signal, a first sub-word-line control signal, and a second sub-word-line control signal, and provides the word line driving signal to a memory cell array. The semiconductor memory device may reduce an amount of leakage current flowing to a ground through the sub-word-line driving circuit.
Abstract:
A semiconductor memory device includes a cell array unit having a plurality of banks each having a plurality of blocks, and a refresh controller configured to set at least one of the blocks as a test block, perform a refresh operation on the blocks except for the test block in a self-refresh operation period, determine a refresh period of the test block, and then set another one of the blocks as the test block.
Abstract:
A memory system selectively sets signaling modes based on stack position information. The memory system includes a memory module having at least one semiconductor memory device and a memory controller configured to set a signaling mode based on stack position information of each of the semiconductor memory devices. A signaling between the memory controller and each of the semiconductor memory devices is performed in a differential signaling mode, and a signaling among the semiconductor memory devices is performed in a single-ended signaling mode. Accordingly, the memory system has reduced power consumption.
Abstract:
A semiconductor memory device is disclosed. The semiconductor device includes a memory cell array, a clock signal generator configured to receive an external clock signal from the outside of the memory device and output an internal clock signal, and a data output unit configured to receive an internal data signal from the memory cell array and output a read data signal in response to the internal clock signal. The semiconductor memory device also includes a read data strobe unit configured to output a read data strobe signal having a cycle time of n times (n is an integer equal to or more than 2) a cycle time of the internal clock signal, based on the internal clock signal.
Abstract:
A memory module and a related memory system are disclosed. The memory module comprises a semiconductor memory having a data output buffer, a data input buffer, a command/address input buffer and a first termination resistor unit connected to a data bus. The memory module further comprises a second termination resistor unit connected to an internal command/address bus. First and second termination resistor units are preferably of different resistive value and/or type.
Abstract:
The invention relates generally to a multi-chip package (MCP) memory device, and more particularly, but without limitation, to a MCP memory device having a reduced size. In one embodiment, the MCP memory device includes: a transfer memory chip; and a plurality of memory chips coupled to the transfer memory chip, each of the plurality of memory chips including an internal voltage generating circuit, the transfer memory chip configured to receive a plurality of command signals from outside the MCP memory device, the transfer memory chip further configured to output a plurality of control signals to the plurality of memory chips based on the plurality of command signals. Embodiments of the invention also relate to a method of controlling an internal voltage of the MCP memory device.
Abstract:
A multi-chip memory device includes a transfer memory chip communicating input/output signals, a stacked plurality of memory chips each including a memory array having a designated bank, and a signal path extending upward from the transfer memory chip through the stack of memory chips to communicate input/output signals, wherein each bank of each memory chip in the stacked plurality of memory chips is commonly addressed to provide read data during a read operation and receive write data during a write operation, and vertically aligned within the stacked plurality of memory chips.
Abstract:
A semiconductor memory device includes a stacked plurality of interposer chips, each interposer chip seating a smaller corresponding memory chip, wherein a lowermost interposer chip in the stacked plurality of interposer chips is mounted on a buffer chip. Each one of the stacked plurality of interposer chips includes a central portion having bond pads seating the corresponding memory device and a peripheral portion having a plurality of through silicon vias (TSVs). The respective pluralities of TSVs for adjacent interposer chips in the stacked plurality of interposer chips are connected via vertical connection elements to form multiple internal signal paths communicating write data from and read data to the buffer chip from respective memory chips.
Abstract:
A system, device and related method are used to communicate data via a plurality of data lanes including a selected data lane. In a first mode of operation, payload data and related supplemental data are communicated via the plurality of data lanes including the selected data lane. In a second mode of operation, only payload data is communicated via the plurality of data lanes, except the selected data lane.
Abstract:
A semiconductor memory device utilizing a data coding method in an initial operation. The semiconductor memory device includes a plurality of counters communicating with a data coding unit. The counters count the number of data bits and flag information data bits in a first logic state in a first data group which includes at least one data bit and second through nth groups each including at least one data bit and flag information. The data coding unit selectively applies a first operation mode and a second operation mode to each of the first through nth data groups and codes the data of each of the first through nth data groups. The first operation mode codes the data of each of the first through nth data groups such that the counted number of data bits in the first logic state in each of the first through nth groups is minimized. The second operation mode codes the data of each of the first through nth groups such that the difference between the number of data bits and flag information data bits in the first logic state and the number of data bits and flag information data bits in a second logic state in the first through nth data groups is minimized. In this manner, the semiconductor memory device and the associated data coding method prevents the initial logic state of data from being changed due to a voltage drop in the initial operation of the device.