Abstract:
An accessory device comprising: an enclosure; one or more electrical components positioned within or attached to the enclosure; an attachment feature connected to the enclosure and configured to magnetically couple the accessory device with the electronic device, the attachment feature comprising: an exterior surface; a corresponding plurality of openings formed through the exterior surface; a plurality of movable contacts corresponding in number to the plurality of openings, each movable contact extending out of one of the plurality of openings; one or more biasing members operatively coupled to the plurality of movable contacts to bias the contacts such that a contacting portion of each contact protrudes beyond the exterior surface of the attachment feature through its respective opening; and an alignment feature comprising at least one magnet positioned adjacent to the plurality of openings.
Abstract:
A case for an electronic device is disclosed. The case includes a body defining an interior volume configured to receive the electronic device therein. The body includes a user input region formed from a deformable material having an electrical resistance that decreases in response to a touch force on the deformable material, and an electrode pair in contact with the deformable material and configured to be operatively coupled to a sensing circuit configured to detect a change to the electrical resistance of the deformable material due to the touch force. The body also includes a connector configured to operatively couple the electrode pair to the electronic device.
Abstract:
A dual orientation connector having a connector tab with first and second major opposing sides and a plurality of electrical contacts carried by the connector tab. The plurality of contacts includes a first set of external contacts formed at the first major side and a second set of external contacts formed at the second major side. The first plurality of contacts are symmetrically spaced with the second plurality of contacts and the connector tab is shaped to have 180 degree symmetry so that it can be inserted and operatively coupled to a corresponding receptacle connector in either of two insertion orientations.
Abstract:
An inductor coil for an inductive energy transfer system includes multiple layers of a single wire having windings that are interlaced within at least two of the multiple layers such that both an input end and an output end of the wire enter and exit the coil on a same side of the coil. The input end and the output end of the wire may abut one another at the location where the input and output wires enter and exit the inductor coil. The wire can include one or more bundles of strands and the strands in each bundle are twisted around an axis extending along a length of the wire, and when there are at least two bundles, the bundles may be twisted around the axis. At least one edge of the inductor coil can be formed into a variety of shapes, such as in a curved shape.
Abstract:
A dual orientation connector having a connector tab with first and second major opposing sides and a plurality of electrical contacts carried by the connector tab. The plurality of contacts includes a first set of external contacts formed at the first major side and a second set of external contacts formed at the second major side. Each individual contact in the first plurality of contacts is electrically connected within the tab or body to a corresponding contact in the second plurality of contacts. In some embodiments contacts in the first and second pluralities of contacts that are directly opposite each other are coupled together. In some other embodiments, contacts in the first and second pluralities of contacts that are in a cater cornered relationship with each other are coupled together. The first plurality of contacts are symmetrically spaced with the second plurality of contacts and the connector tab is shaped to have 180 degree symmetry so that it can be inserted and operatively coupled to a corresponding receptacle connector in either of two insertion orientations.
Abstract:
A stackable connector interface with magnetic retention for electronic devices and accessories can allow power and data to be transferred between one or more stacked connectors. Each interconnected stackable connector may include one or more magnetic elements, which magnetic elements may have poles arranged to facilitate mating with other stackable connectors. The magnetic elements may also provide a magnetic retention force that holds mated connectors in contact with each other. The connectors can also include connection detection circuitry for determining whether the connectors are mated with other connectors, thereby allowing the connectors to prevent live contacts from being exposed at an unmated surface of the connectors. In addition to connection detection circuitry, routing circuitry may also be included to determine how signals should be transferred between the interconnected stackable connectors and/or corresponding devices.
Abstract:
A stackable connector interface with magnetic retention for electronic devices and accessories can allow power and data to be transferred between one or more stacked connectors. Each interconnected stackable connector may include one or more magnetic elements, which magnetic elements may have poles arranged to facilitate mating with other stackable connectors. The magnetic elements may also provide a magnetic retention force that holds mated connectors in contact with each other. The connectors can also include connection detection circuitry for determining whether the connectors are mated with other connectors, thereby allowing the connectors to prevent live contacts from being exposed at an unmated surface of the connectors. In addition to connection detection circuitry, routing circuitry may also be included to determine how signals should be transferred between the interconnected stackable connectors and/or corresponding devices.
Abstract:
A high-speed electrical connector employs a plurality of electrical contacts held together by a dielectric frame. The contacts are electrically coupled to a substrate within the connector. A gasket may be disposed between the dielectric frame and the substrate and configured to block the flow of an overmold material between the dielectric frame and the substrate such that voids are formed between the contacts. The dielectric frame and the overmold may be made from materials containing silica aerogel. The voids and the aerogel materials result in reduced parasitic capacitance between the contacts enabling higher data transfer speeds.
Abstract:
A first electronic device includes an inner inductive coil positioned at least partially around a shield core and a second electronic device includes an outer inductive coil positioned around an aperture. The first electronic device is operable to receive power from and/or transmit power to the second electronic device when a portion of the first electronic device is inserted into the aperture of the second electronic device, positioning the inner inductive coil within the aperture and within the outer inductive coil. When power is being transmitted between the first and second electronic devices, the shield core concentrates magnetic flux around the inner inductive coil and/or the outer inductive coil. In some implementations, an outer shield may be positioned at least partially around the outer inductive coil and may also concentrate magnetic flux around the inner inductive coil and/or the outer inductive coil.
Abstract:
Methods and systems for automatically aligning a power-transmitting inductor with a power-receiving inductor. One embodiment includes multiple permanent magnets coupled to and arranged on a surface of a movable assembly accommodating a power-transmitting inductor. The permanent magnets encourage the movable assembly to freely move and/or rotate via magnetic attraction to correspondingly arranged magnets within an accessory containing a power-receiving inductor.