Abstract:
Measurements and Channel State Information (CSI) feedback are configured using communications between a network and user equipment (UE). The communications includes a first signaling from a network component to the UE indicating one or more reference signal (RS) resource configurations, a second signaling indicating one or more interference measurement (IM) resource configurations, and a third signaling indicating a CSI report configuration, wherein the CSI report configuration indicates a subset of the one or more RS resource configurations and a subset of the one or more IM resource configurations. The UE establishes a RS based measurement according to the subset of the one or more RS resource configurations and an IM according to the subset of the one or more IM resource configurations. The UE then generates and sends to the network a CSI report in accordance with the CSI report configuration and using the RS based measurement and the IM.
Abstract:
A physical downlink shared channel (PDSCH) region of a subframe may include a reference signal (RS) section that includes one or more of a beam-scanning subsection, a transmit (TX) beam-tracking subsection, a receive (RX) beam-tracking subsection, and a channel state information (CSI) subsection. Reference signals in the TX beam-tracking subsection may be used to update TX analog beams. Reference signals in the RX beam-tracking subsection may be used to update RX analog beams. Reference signals in the beam-scanning subsection may be used to evaluate different combinations of TX and RX analog beams for use in a future directional data transmission. Reference signals in the CSI subsection may be transmitted over quasi-co-located (QCL) antenna ports, and may be used for purposes of channel estimation.
Abstract:
A device, network, and method for communications with spatial-specific sensing is provided. In an embodiment, a method in a first communication node for providing contention-based transmission from the first communication node in a network to a second communication node includes determining, by the first communication node, a transmission direction, the transmission direction characterized by a digital beamforming direction and an analog beamsteering direction; performing, by the first communication node, spatial-specific carrier sensing in accordance with a sensing direction associated with the transmission direction; determining, by the first communication node, a channel status of a channel along the sensing direction according to the spatial-specific carrier sensing; and transmitting, by the first communication node, a transmission along the transmission direction.
Abstract:
A device and method for transmission and reception of control and data channels with a group reference signal (GRS). A GRS may include a first common reference signal associated with a first group of users and a second common reference signal associated with a second group of users. Some users or channels can be grouped to use one set of common reference signals and other users or channels can be grouped to use another set of common reference signals.
Abstract:
System and method embodiments are provided for network cell discovery. In an embodiment, a n a mobile device includes receiving, at the mobile device at least one parameter from a first network component, wherein the at least one parameter ated with a discovery signal (DS) generated by and transmitted from a second network component, wherein the parameter specifies a time period between successive transmissions of the DS, an offset within the time period, and a duration of each transmission of the DS; receiving, at the mobile device, according to the time period and the offset, the DS from the second network component; and suspending reception on a first carrier radio resource during a gap in successive transmissions on the first carrier radio resource and receiving a signal on a second carrier radio resource during the gap, wherein the gap is determined according to the parameter.
Abstract:
An embodiment method of network node operation includes indicating, by a first network node, to a first UE, a first number of REs in a first set of RBs for a first reference signal, transmitting, by the first network node, to the first UE, the first reference signal in accordance with the first number of REs and a first precoding in a first subframe, receiving, by the first network node, from the first UE, a report indicating a first MCS in accordance with a level of signal and interference measured by the first UE, wherein the measurement is restricted to the first reference signal, and transmitting, by the first network node, a first data with the indicated first MCS and the first precoding in a second subframe, the first data being transmitted on a second number of REs in the first set of RBs in the second subframe.
Abstract:
The disclosure relates to a base station configuring component carriers to user equipment (UE). The base station determines one or more component carriers to configure based on the UE carrier aggregation capability and sends a first configuration signaling to configure the UE with the component carriers in one or more component carrier sets. The base station configures each of the component carrier sets with a first common parameters and operations set and sends a second configuration signaling to configure the component carrier sets of the UE with the first common parameters and operations set. The base station then sends a third configuration signaling to configure each of the component carriers in the UE with a second parameters and operations set.
Abstract:
An embodiment method for adaptation and reconfiguration in a wireless network includes base stations coordinating and setting aside a set of time-frequency resources for probing purposes, the base stations coordinating a set of probing transmissions and timings to be used to synchronize base stations/UEs actions, the base stations signaling the resources and timings to UEs, the base stations performing coordinated operations on the resources according to the timings, the base stations receiving feedback reports from UEs based on UE measurements on the signaled resources according to the signaled timings, and the base stations further coordinating the operations for further probing or to apply probing transmissions on broader time-frequency resources.
Abstract:
A network and method for wireless communications are provided. A first network element in the network may transmit a first reservation signal to reserve a channel. The first reservation signal may at least partially overlap a second reservation signal transmitted by a second network element for channel reservation. The first network element and the second network element share the same channel. The first network element may also perform interference cancellation to cancel the second reservation signal transmitted by the second network element for carrier sensing.
Abstract:
Method and apparatus are provided for offloading data from a cellular network via a secondary network. The offloaded data may be transported over a connection existing independently from the cellular network, such as a direct device-to-device (D2D) or direct mobile communications (DMC) link. The connection may be established between a first peer mobile device and a benefactor peer mobile device, and the benefactor peer mobile device may relay the data to/from a backhaul network via the secondary network. The benefactor peer mobile device may receive compensation for offloading the traffic, and may compete with one or more candidate benefactor devices for the task of offloading the data. The offloaded data may be uplink data originating from the beneficiary peer mobile, or downlink data destined for the beneficiary peer mobile.