Abstract:
The present invention relates to a method for transmitting control information regarding uplink multiple antenna transmission may comprise the steps of: transmitting DCI for scheduling the uplink transmission of a plurality of data blocks through a PDCCH; receiving the plurality of data blocks scheduled by the DCI; transmitting information which indicates positive acknowledgement or negative acknowledgement to each of the plurality of received data blocks through the PHICH; and receiving retransmission for the negative acknowledged data blocks. When the number of the negative-acknowledged data blocks is not equal to the number data blocks indicated in the PDCCH, a pre-coding matrix, which is for the number of transmission layers equivalent to that of layers corresponding to the negative-acknowledged data blocks, may be used for retransmission.
Abstract:
A method for transmitting a channel status information reference signals (CSI-RSs) for a maximum of eight antenna ports includes mapping the CSI-RSs for a maximum of eight antenna ports onto a data region of a downlink subframe having a normal cyclic prefix (CP) configuration according to a predetermined pattern; and transmitting the downlink subframe to which the CSI-RSs mapped, wherein the predetermined pattern defines the CSI-RSs to be mapped onto two OFDM symbols of the data region in the downlink subframe and mapped to at least one of four subcarrier positions in each of the two OFDM symbols, and wherein the four subcarrier positions defined by the predetermined pattern may be two consecutive subcarrier positions and two other consecutive subcarrier positions spaced apart by four subcarriers.
Abstract:
A method of receiving, by a base station, a reference signal in a wireless communication system. The method includes transmitting a cell-specific sequence group hopping parameter to a plurality of user equipments (UEs) in a cell. The cell-specific sequence group hopping parameter is used to enable a sequence group hopping for the plurality of UEs in the cell. The method further includes transmitting a UE-specific sequence group hopping parameter to a certain UE, among the plurality of UEs. The UE-specific sequence group hopping parameter is used to disable the sequence group hopping, enabled by the cell-specific SGH parameter, for the certain UE. The method further includes receiving a reference signal, which is generated based on a sequence group number, from the certain UE. The sequence group number is determined by the UE-specific sequence group hopping parameter.
Abstract:
A method for transmitting a signal via physical uplink control channel (PUCCH) in a wireless communication system and an apparatus for performing the method are provided. Control information bits are modulated to generate N1 modulation symbols, wherein N1 is twice a number of subcarriers in one resource block (RB). The modulation symbols are spread by using various orthogonal codes to generate a plurality of sequences and the generated plurality of sequences are transmitted using different slots of a subframe through different antenna ports, each sequence of the plurality of sequences being mapped on a corresponding single carrier frequency division multiple access symbol in a corresponding slot.
Abstract:
Embodiments of the present invention relate to a method and an apparatus for enabling a terminal to transmit a signal in a wireless communication system. According to one embodiment, a signal transmission method includes: receiving configuration information for multi-antenna transmission from a base station; configuring a multi-antenna transmission mode in accordance with the received configuration information; and transmitting an uplink channel having a plurality of symbols to the base station through multiple antennas.
Abstract:
The present invention relates to a wireless communication system, and more specifically, to a method and an apparatus for transmitting an RS (Reference Signal) from a transmission end. The present invention relates to an RS transmission method and an apparatus therefore, comprising the steps of: confirming RS resources which are defined according to each layer; and transmitting the precoded RS for the layers to a receiving end through a multiple antenna, wherein the RS resource includes a 1st index for indicating an RS resource pattern group in which the precoded RS is mapped within a resource block and a 2nd index for indicating a code resource for multiplexing the precoded RSs within the RS resource pattern group.
Abstract:
A method for transmitting a reference signal in a multi-antenna system is provided. The method includes: selecting at least one orthogonal frequency division multiplexing (OFDM) symbol in a subframe containing a plurality of OFDM symbols; allocating a channel quality indication reference signal (CQI RS) capable of measuring a channel state for each of a plurality of antennas to the selected at least one OFDM symbol; and transmitting the CQI RS, wherein the CQI RS is allocated to an OFDM symbol which does not overlap with an OFDM symbol to which a common reference signal to be transmitted to all user equipments in a cell or a dedicated reference signal to be transmitted to a specific user equipment in the cell is allocated.
Abstract:
A method of measuring interference to perform efficient data communication is disclosed. A method of measuring interference of neighboring cells comprises allocating one or more first resource elements, to which pilot signals are allocated, to predetermined symbol regions included in a first resource block; allocating one or more second resource elements for measuring interference of the neighboring cells to a first symbol region of the predetermined symbol regions; and measuring interference of the neighboring cells using the one or more second resource elements.
Abstract:
A method for receiving feedback information by a user equipment (UE) includes: receiving scheduling information from a base station through a first downlink component carrier linked with a first uplink component carrier; determining resources on a second uplink component carrier other than the first uplink component carrier using said scheduling information, wherein said scheduling information allows cross-carrier scheduling which schedules the resources on the second uplink component carrier; transmitting data to the base station through the determined resources on the second uplink component carrier; determining a PHICH (a Physical Hybrid ARQ Indicator Channel) resource to receive feedback information for the data transmitted on the second uplink component carrier, wherein the PHICH resource is predetermined as that of the first downlink component carrier in which the scheduling information was received; and receiving the feedback information from the base station through the determined PHICH resource.
Abstract:
A method for multiplexing a data information stream, including a systematic symbol and a non-systematic symbol, and a control information stream of at least three types in a wireless mobile communication system is disclosed. The method includes mapping the data information stream to a resource area so that the systematic symbol is not mapped to a specific resource area to which the control information stream is mapped, and mapping the control information stream to the specific resource area.