Abstract:
Some embodiments include communication methods, methods of forming an interconnect, signal interconnects, integrated circuit structures, circuits, and data apparatuses. In one embodiment, a communication method includes accessing an optical signal comprising photons to communicate information, accessing an electrical signal comprising electrical data carriers to communicate information, and using a single interconnect, communicating the optical and electrical signals between a first spatial location and a second spatial location spaced from the first spatial location.
Abstract:
A method of formation of an isolation structure for vertical semiconductor devices, the resulting isolation structure, and a memory device to prevent leakage among adjacent vertical semiconductor devices are described.
Abstract:
Memory cells and methods of forming the same and devices including the same. The memory cells have first and second electrodes. An amorphous semiconductor material capable of electronic switching and having a first band gap is between the first and second electrodes. A material is in contact with the semiconductor material and having a second band gap, the second band gap greater than the first band gap.
Abstract:
A memory device includes an array of memory cells and peripheral devices. At least some of the individual memory cells include carbonated portions that contain SiC. At least some of the peripheral devices do not include any carbonated portions. A transistor includes a first source/drain, a second source/drain, a channel including a carbonated portion of a semiconductive substrate that contains SiC between the first and second sources/drains and a gate operationally associated with opposing sides of the channel.
Abstract:
In one embodiment, a floating body field-effect transistor includes a pair of source/drain regions having a floating body channel region received therebetween. The source/drain regions and the floating body channel region are received over an insulator. A gate electrode is proximate the floating body channel region. A gate dielectric is received between the gate electrode and the floating body channel region. The floating body channel region has a semiconductor SixGe(1-x)-comprising region. The floating body channel region has a semiconductor silicon-comprising region received between the semiconductor SixGe(1-x)-comprising region and the gate dielectric. The semiconductor SixGe(1-x)-comprising region has greater quantity of Ge than any quantity of Ge within the semiconductor silicon-comprising region. Other embodiments are contemplated, including methods of forming floating body field-effect transistors.
Abstract:
In accordance with the present techniques, there is provided a JFET device structures and methods for fabricating the same. Specifically, there is provided a transistor including a semiconductor substrate having a source and a drain. The transistor also includes a doped channel formed in the semiconductor substrate between the source and the drain, the channel configured to pass current between the source and the drain. Additionally, the transistor has a gate comprising a semiconductor material formed over the channel and dielectric spacers on each side of the gate. The source and the drain are spatially separated from the gate so that the gate is not over the drain and source.
Abstract:
Some embodiments include communication methods, methods of forming an interconnect, signal interconnects, integrated circuit structures, circuits, and data apparatuses. In one embodiment, a communication method includes accessing an optical signal comprising photons to communicate information, accessing an electrical signal comprising electrical data carriers to communicate information, and using a single interconnect, communicating the optical and electrical signals between a first spatial location and a second spatial location spaced from the first spatial location.
Abstract:
Some embodiments include memory cells that contain floating bodies and diodes. The diodes may be gated diodes having sections doped to a same conductivity type as the floating bodies, and such sections of the gated diodes may be electrically connected to the floating bodies. The floating bodies may be adjacent channel regions, and spaced from the channel regions by a dielectric structure. The dielectric structure of a memory cell may have a first portion between the floating body and the diode, and may have a second portion between the floating body and the channel region. The first portion may be more leaky to charge carriers than the second portion. The diodes may be formed in semiconductor material that is different from a semiconductor material that the channel regions are in. The floating bodies may have bulbous lower regions. Some embodiments include methods of making memory cells.