Abstract:
In a method of fabricating an apparatus for use in a sensing application, a plurality of nano-fingers are formed on a substrate and a Raman-active material nano-particle is formed on respective tips of the nano-fingers. In addition, the Raman-active material nano-particles on the tips of adjacent ones of the nano-fingers are caused to come into contact with the Raman-active material nano-particle on the tip of at least another one of the plurality of nano-fingers to form respective clusters and the clusters of Raman-active material nano-particles are transferred to a component layer from the plurality of nano-fingers while maintaining a spatial relationship between the contacting Raman-active material nano-particles.
Abstract:
An apparatus includes a substrate and a plurality of nano-fingers attached at respective first ends to the substrate and freely movable along their lengths, in which a first set of the plurality of nano-fingers comprises a first physical characteristic, wherein a second set of the plurality of nano-fingers comprises a second physical characteristic, and wherein the first physical characteristic differs from the second physical characteristic.
Abstract:
A molecular sensing device includes a substrate; a well i) formed in a material that is positioned on a surface of the substrate or ii) formed in a surface of the substrate; a signal amplifying structure positioned in the wed; and an immersion fluid deposited into the well and surrounding the signal amplifying structure.
Abstract:
Systems and methods for synthesizing molecules on a substrate surface are disclosed. In one aspect, a molecule synthesizing system includes a crossbar array with a planar arrangement of crossbar junctions. Each crossbar junction is independently switchable between a high-resistance state and a low-resistance state. The system also includes a slab with a first surface and a second surface parallel to the first surface. The second surface is disposed on the crossbar array. A current applied to a crossbar junction in a high-resistance state creates an adjacent heated site on the first surface for attaching thermally reactive molecules for molecular synthesis.
Abstract:
Examples of integrated sensors are disclosed herein. An example of an integrated sensor includes a flexible substrate, and an array of spaced apart sensing members formed on a surface of the flexible substrate. Each of the spaced apart sensing members includes a plurality of polygon assemblies. The polygon assemblies are arranged in a controlled pattern on the surface of the flexible substrate such that each of the plurality of polygon assemblies is a predetermined distance from each other of the plurality of polygon assemblies, and each of the plurality of polygon assemblies including collapsible signal amplifying structures controllably positioned in a predetermined geometric shape.
Abstract:
A method for modifying the texture of a semiconductor material is provided. The method includes performing a first texture step comprising reactive ion etching to a first surface of semiconductor material. After the first texture step, the first surface of the semiconductor material has a random texture comprising a plurality of peaks and a plurality of valleys, and wherein at least fifty percent of the first surface has a peak-to-valley height of less than one micron and an average peak-to-peak distance of less than one micron. Additional texture steps comprising wet etch or RIE etching may be optionally applied.
Abstract:
Apparatus, methods, and hollow metal waveguides to perform surface-enhanced Raman spectroscopy are disclosed. An example apparatus includes a hollow metal waveguide to direct Raman photons from an intermediate location within a volume of the hollow metal waveguide toward a distal end of the hollow metal waveguide, and a mirror to direct incident light from a light source to the intermediate location within the volume of the hollow metal waveguide and to direct at least some of the Raman photons toward the distal end.
Abstract:
A memory device (100) includes a semiconductor wire including a source region (132), a drain region (134), and a channel region (130) between the source region (132) and the drain region (134). A gate structure that overlies the channel region includes a memristive portion (120) and a conductive portion (110) overlying the memristive portion (120).
Abstract:
A probe for use in a sensing application includes an elongate body having a first end and a free end, wherein the first end is to be attached to a support. The probe also includes a plurality of nano-fingers having respective bases and tips, wherein each of the plurality of nano-fingers is attached to the free end and is composed of a flexible material, and wherein the plurality of nano-fingers are collapsed toward each other such that the tips of the plurality of nano-fingers are substantially in contact with each other.
Abstract:
An apparatus includes a substrate and a plurality of nano-fingers attached at respective first ends to the substrate and freely movable along their lengths, in which a first set of the plurality of nano-fingers comprises a first physical characteristic, wherein a second set of the plurality of nano-fingers comprises a second physical characteristic, and wherein the first physical characteristic differs from the second physical characteristic.