Abstract:
The present invention is directed to systems and methods to generate a manifest of work that is to be performed by a driver. Specifically, systems and methods are described in the context of a package delivery system to generate a manifest of deliveries and pickups to be performed by a driver and to download the generated manifest to a portable computing device used by the driver to service the route.
Abstract:
A charged particle beam including charged particles (e.g., electrons) is generated from a charged particle source (e.g., a cathode or scanning electron beam). As the beam is projected, it passes between plural alternating electric fields. The attraction of the charged particles to their oppositely charged fields accelerates the charged particles, thereby increasing their velocities in the corresponding (positive or negative) direction. The charged particles therefore follow an oscillating trajectory. When the electric fields are selected to produce oscillating trajectories having the same (or nearly the same) frequency as the emitted radiation, the resulting photons can be made to constructively interfere with each other to produce a coherent radiation source.
Abstract:
Devices disclosed according to various embodiments use one or more arrays of atomic magnetometers to detect biologically derived magnetic fields. The disclosed devices and methods relate to application of utilization of a magnetic sensor with unique properties requiring changes in design, allowing new functions, and requiring alternative analysis methodologies. Various embodiments are also directed to methods for obtaining and processing biological magnetic signals. These methods may take advantage of the unique spatial arrangement of the atomic magnetometers and the capacity sensors to he used in either a scalar or a vector mode. Various embodiments have advantages over current magnetometer arrays for the purpose of detecting biological magnetic fields. Such advantages may include, for example: smaller size, lower power consumption, no necessity for cryogenic cooling, potential wafer-level fabrication, and/or the potential of better localization biological signals. In addition, various embodiments may allow increased target or subject mobility.
Abstract:
We describe an ultra-small structure and a method of producing the same. The structures produce visible light of varying frequency, from a single metallic layer. In one example, a row of metallic posts are etched or plated on a substrate according to a particular geometry. When a charged particle beam passed close by the row of posts, the posts and cavities between them cooperate to resonate and produce radiation in the visible spectrum (or even higher). A plurality of such rows of different geometries are formed by either etching or plating from a single metal layer such that the charged particle beam will yield different visible light frequencies (i.e., different colors) using different ones of the rows.
Abstract:
A device for coupling energy in a plasmon wave to an electron beam includes a metal transmission line having a pointed end; a generator mechanism constructed and adapted to generate a beam of charged particles; and a detector microcircuit disposed adjacent to the generator mechanism. The generator mechanism and the detector microcircuit are disposed adjacent the pointed end of the metal transmission line and wherein a beam of charged particles from the generator mechanism to the detector microcircuit electrically couples the plasmon wave traveling along the metal transmission line to the microcircuit.
Abstract:
An antenna system includes a dielectric structure formed on a substrate; an antenna, partially within the dielectric structure, and supported by the dielectric structure; a reflective surface formed on the substrate. A shield blocks radiation from a portion of the antenna and from at least some of the dielectric structure. The shield is supported by the dielectric structure.
Abstract:
An electronic transmitter or receiver employing electromagnetic radiation as a coded signal carrier is described. In the transmitter, the electromagnetic radiation is emitted from ultra-small resonant structures when an electron beam passes proximate the structures. In the receiver, the electron beam passes near ultra-small resonant structures and is altered in path or velocity by the effect of the electromagnetic radiation on structures. The electron beam is accelerated to an appropriate current density without the use of a high power supply. Instead, a sequence of low power levels is supplied to a sequence of anodes in the electron beam path. The electron beam is thereby accelerated to a desired current density appropriate for the transmitter or receiver application without the need for a high-level power source.
Abstract:
A sensor device includes a substrate having first and second regions of first and second conductivity types, respectively. A junction having a band-gap is formed between the first and second regions. A plasmon source generates plasmons having fields. At least a portion of the plasmon source is formed near the junction, and the fields reduce the band-gap to enable a current to flow through the device.
Abstract:
A device couples energy from an electromagnetic wave to charged particles in a beam. The device includes a micro-resonant structure and a cathode for providing electrons along a path. The micro-resonant structure, on receiving the electromagnetic wave, generates a varying field in a space including a portion of the path. Electrons are deflected or angularly modulated to a second path.
Abstract:
A display of wavelength elements can be produced from resonant structures that emit light (and other electromagnetic radiation having a dominant frequency higher than that of microwave) when exposed to a beam of charged particles, such as electrons from an electron beam. An exemplary display with three wavelengths per pixel utilizes three resonant structures per pixel. The spacings and lengths of the fingers of the resonant structures control the light emitted from the wavelength elements. Alternatively, multiple resonant structures per wavelength can be used as well.