Abstract:
A method of forming an epitaxial layer of uniform thickness is provided to improve surface flatness. A substrate is first provided and a Si base layer is then formed on the substrate by epitaxy. A Si—Ge layer containing 5 to 10% germanium is formed on the Si base layer by epitaxy to normalize the overall thickness of the Si base layer and the Si—Ge layer containing 5 to 10% germanium.
Abstract:
Disclosed is a method of manufacturing microelectronic devices including forming a silicon substrate with first and second wells of different dopant characteristics, forming a first strained silicon-germanium-carbon layer of a first formulation proximate to the first well, and forming a second strained silicon-germanium-carbon layer of a second formulation distinct from the first formulation proximate to the second well. Capping and insulating layers, gate structures, spacers, and sources and drains are then formed, thereby creating a CMOS device with independently strained channels.
Abstract:
The channel of a MOSFET is selectively stressed by selectively stressing the silicide layers on the gate electrode and the source/drain. Stress in the silicide layer is selectively produced by orienting the larger dimensions of the silicide grains in a first direction and the smaller dimensions in a second, perpendicular direction, with one of the directions being parallel to the direction of carrier movement in the channel and the other direction being perpendicular thereto.
Abstract:
Disclosed is a method of manufacturing microelectronic devices including forming a silicon substrate with first and second wells of different dopant characteristics, forming a first strained silicon-germanium-carbon layer of a first formulation proximate to the first well, and forming a second strained silicon-germanium-carbon layer of a second formulation distinct from the first formulation proximate to the second well. Capping and insulating layers, gate structures, spacers, and sources and drains are then formed, thereby creating a CMOS device with independently strained channels.
Abstract:
A semiconductor chip includes a semiconductor substrate 126, in which first and second active regions are disposed. A resistor 124 is formed in the first active region and the resistor 124 includes a doped region 128 formed between two terminals 136. A strained channel transistor 132 is formed in the second active region. The transistor includes a first and second stressor 141, formed in the substrate oppositely adjacent a strained channel region 143.
Abstract:
A semiconductor chip includes a semiconductor substrate 126, in which first and second active regions are disposed. A resistor 124 is formed in the first active region and the resistor 124 includes a doped region 128 formed between two terminals 136. A strained channel transistor 132 is formed in the second active region. The transistor includes a first and second stressor 141, formed in the substrate oppositely adjacent a strained channel region 143.
Abstract:
A semiconductor device comprises a substrate. In addition, the semiconductor device comprises an active region and an isolation region. The active region is in the substrate and comprises a semiconductor material. The isolation region is also in the substrate, adjacent the active region and comprises an insulating material. The active region and isolation region form a surface having a step therein. The semiconductor further comprises a dielectric material formed over the step. The dielectric material has a dielectric constant greater than about 8.
Abstract:
A method of fabricating an integrated circuit is provided. A first gate dielectric portion is formed on a substrate in a first transistor region. The first gate dielectric portion includes a first high-permittivity dielectric material. The first gate dielectric portion has a first equivalent silicon oxide thickness. A second gate dielectric portion is formed on the substrate in a second transistor region. The second gate dielectric portion includes the first high-permittivity dielectric material. The second gate dielectric portion has a second equivalent silicon oxide thickness. The second equivalent silicon oxide thickness is different than the first equivalent silicon oxide thickness.
Abstract:
A microelectronic device includes a substrate, and a patterned feature located over the substrate and a plurality of doped regions, wherein the patterned feature includes at least one electrode. The microelectronic device includes at least one sill region for the enhancement of electron and/or hole mobility.
Abstract:
A magnetic oscillation metric controller with return design comprised of a scrolling wheel mechanism, a dancer, a permanent magnet, a Hall sensor and a return structure to drive the permanent magnet by oscillation of the scrolling wheel mechanism to generate signals of changed magnetic fields resulted from displacement for achieving metric control purpose; and the return structure including an elastic stick to facilitate return after lateral or longitudinal displacement.