Abstract:
Provided is a steel cord for reinforcing a rubber article which can further improve cut resistance when applied to a tire. Provided is a steel cord for reinforcing a rubber article including: one core strand 11 having a layered-twisted structure formed by twisting a plurality of steel filaments 1; and a plurality of sheath strands 12 having a layered-twisted structure formed by twisting a plurality of steel filaments 2, wherein the sheath strands are twisted around the core strand. A ratio S1/S of the sum S1 of cross-sectional areas of outermost layer sheath filaments constituting an outermost layer sheath of the core strand to the sum S of cross-sectional areas of all filaments constituting the core strand is from 0.69 to 0.74, and a ratio Ps/P of the sum Ps of strengths of the sheath strands to strength P of the cord as a whole is from 0.81 to 0.85.
Abstract:
Provided is a rubber article-reinforcing steel cord having improved shear fatigue resistance while reducing the weight of the steel cord by using a wire of high tensile strength. The rubber article-reinforcing steel cord 10 is a steel cord 10 having a two-layer twisted structure comprising a core filament 11 composed of a plurality of filaments and a sheath filament 12 composed of a plurality of filaments twisted around the core filament 11, wherein the tensile strength of the core filament 11 is higher than the tensile strength of the sheath filament 12, and the core filament 11 and the sheath filament 12 are twisted together in the same direction and the same pitch.
Abstract:
The present invention relates to a rope for an elevator. The rope for the elevator comprises: a center strand formed by twisting a plurality of wires; inner layer strands formed by twisting the plurality of wires and arranged along the outer periphery of the center strand; and outer layer strands formed by twisting the plurality of wires and arranged along the outer periphery of the inner layer strands, wherein ten of each of the inner layer strands and the outer layer strands are prepared, the diameter of the center strand, the diameter of the inner layer strand and the diameter of the outer layer strand are respectively 0.33-0.35 times, 0.13-0.15 times and 0.22-0.24 times as large as the diameter of a first imaginary circle circumscribed around the outer layer strands, and a fill factor is 64-67%.
Abstract:
An elevator may include: a hoisting machine; a set of hoisting ropes; a traction sheave that comprises a plurality of grooves; and diverting pulleys. The hoisting machine may engage the set of ropes via the traction sheave. Each groove may have an opening for receiving an individual rope. Each rope may include steel wires of circular, non-circular, or circular and non-circular cross-section, twisted together to form strands. The strands of each rope may be twisted together to form the respective rope. A thickness of each rope may be greater than or equal to about 2.5 mm and less than or equal to about 8 mm. An average of wire thicknesses of the steel wires may be greater than or equal to 0.1 mm and less than or equal to 0.4 mm. The strength of the steel wires may be greater than 2,300 N/mm2 and less than 3,000 N/mm2.
Abstract:
An elevator may include: an elevator car; a traction sheave that includes grooves; a hoisting machine configured to drive the traction sheave; and/or hoisting ropes configured to interact with the traction sheave to move the elevator car. An overall contact between the traction sheave and hoisting ropes may exceed a contact angle of 180°. A diameter of the traction sheave may be less than 320 mm. Each hoisting rope may include steel wires twisted together to form strands. The strands of each hoisting rope may be twisted together to form the hoisting rope. A thickness of each hoisting rope may be less than 8 mm. An average of wire thicknesses of the steel wires may be greater than or equal to 0.1 mm and less than or equal to 0.4 mm. A strength of the steel wires may be greater than 2,300 N/mm2 and less than 3,000 N/mm2.
Abstract translation:电梯可以包括:电梯轿厢; 包括凹槽的牵引滑轮; 构造成驱动牵引滑轮的曳引机; 和/或构造成与牵引滑轮相互作用以使电梯轿厢移动的提升绳索。 牵引滑轮和提升绳索之间的整体接触可能会超过180°的接触角。 牵引滑轮的直径可以小于320mm。 每个提升绳可以包括扭绞在一起以形成股线的钢丝绳。 每个提升绳索的绞线可以被扭绞在一起以形成提升绳索。 每个提升绳的厚度可以小于8毫米。 钢丝的线材厚度的平均值可以大于或等于0.1mm且小于或等于0.4mm。 钢丝的强度可以大于2,300N / mm 2且小于3,000N / mm 2。
Abstract:
Provided is a steel cord for reinforcing rubber articles which has both rubber penetration and productivity and which allows to reduce the weight of a tire without compromising the strength of the tire when applied to a tire, and a pneumatic tire using the same.The steel cord for reinforcing rubber articles of the present invention is a steel cord for reinforcing rubber articles comprising a core formed by arranging two core filaments in parallel without twisting the filaments together, and six sheath filaments twisted around the core. Letting the diameter of the core filament dc (mm), the diameter of the sheath filament ds (mm) and sheath filament twist pitch p (mm), an average sheath filament interval D represented by the following Formula (I): D=[L−6ds{1+(L/p)2}1/2]/6 (I), (where L=(π+2)dc+πds) is from 25 to 80 μm.
Abstract:
A tire with a radial carcass reinforcement, wherein the reinforcing elements of at least one layer of the carcass reinforcement are non-wrapped three-layered metal cords with an unsaturated external layer which in what is referred to as the permeability test return a mean flow rate less than 4 cm3/min and at least 2 points of zero flow rate over a length of 2 cm.
Abstract:
Provided is a steel cord for reinforcing a rubber article, which has an improved durability against so-called cuts, such as notches and perforations, which are generated in the case of treading on an obtusely or sharply pointed projection, without decreasing the strength in the axial direction of the cord, and without increasing the thickness in the radial direction, namely without increasing the weight of a tire, as well as a tire using the steel cord for reinforcing a rubber article as a reinforcing material, especially a construction vehicle tire. Also provided is a steel cord for reinforcing rubber articles with a multi-twisted structure formed by twisting a plurality of sheath strands formed by twisting a plurality of wires around a core strand formed by twisting a plurality of wires, and the core strand being constituted of an at least three-layer-twisted structure formed by twisting core filaments and sheath filaments. The lowest tensile breaking strength of filament bs and the tensile breaking strength of steel cord Bc satisfy the relationship represented by the following formula: bs/Bc×100≧0.65.
Abstract:
A double rustproof PC strand has superior durability and semi-permanent rustproof performance. A core wire and surrounding wires are formed of wires subjected to a wire drawing treatment and a plating treatment to be formed with a plated layer. A rustproof treatment is applied by forming a synthetic resin coat on an outer peripheral surface thereof. In order to uniformize and regulate the twisting pitch, the core wire and the surrounding wires are adjusted under the conditions of: (A) Diameter of CORE: 4.42±0.05 mm, Diameter of Surrounding wire: 4.25±0.05 mm, (B) Diameter of CORE: 5.22±0.05 mm, Diameter of Surrounding wire: 5.06±0.05 mm, or (C) Diameter of CORE: 5.40±0.05 mm, Diameter of Surrounding wire: 5.25±0.05 mm, and then twisted, and the tensile strength is 1850 N/mm2 or higher.
Abstract:
An elevator may include an elevator car; a traction sheave that comprises a plurality of grooves; a hoisting machine configured to drive the traction sheave; and a plurality of beltless hoisting ropes configured to interact with the traction sheave to move the elevator car. An overall contact between the traction sheave and the hoisting ropes may exceed a contact angle of 180°. A diameter of the traction sheave may be less than 320 mm. The hoisting ropes may include a load-bearing part twisted from steel wires. A thickness of the load-bearing part twisted from the steel wires may be less than 8 mm. Each of the hoisting ropes may further include an individual exterior coating.