Abstract:
A snubber apparatus comprises a casing defining an inner cavity. A shaft passes through the inner cavity and rotates about its longitudinal axis. The shaft has one or two ends laterally projecting out of the casing and being connected to a moving part of a tool to dampen given motions thereof. A wiper arm is on the shaft so as to rotate therewith the shaft, with a free end in close proximity to the surface portions of the inner cavity. The free end has an arcuate contour complementarily corresponding to a circumferential surface portion. A dam extends from the circumferential surface portion into close proximity to the wiper arm, to divide the inner cavity in two chambers, with movements of the wiper arm changing the volume of the chambers. A hydraulic circuit controls a flow of fluid between chambers to oppose a force to rotation of the shaft.
Abstract:
The disclosure relates to a hinge for furniture or domestic appliances, comprising a lateral part on which a hinge part is pivotally mounted via two levers. A damping device is provided having a movable damping element which is mounted in a movable manner between guide elements for damping purposes and which can be moved via a first actuation element during a closing movement of the hinge before reaching the closed position. A second actuation element is provided which pushes the damping element during an opening movement of the hinge before reaching the maximum opening position for damping an opening process. In this manner, the hinge provides an opening as well as a closing damping function.
Abstract:
There is provided an opening and closing apparatus, including: a main body; an openable body pivoting between a closed position and an open position; a connecting part connecting an end of the main body and an end of the openable body; a rack provided in one of the main body and the openable body; and an arm, wherein a part, of a pitch line of the rack, which makes contact with a pitch circle of the pinion in a state that the openable body is positioned in the vicinity of the closed position is an inclined line which is inclined to approach the other of the main body and the openable body having no rack, as the inclined line is farther away from the connecting part with the openable body being in the closed position.
Abstract:
A hinge assembly is provided in the form of a toggle type hinge, with an arm assembly (11) anchorable in use to a first member and a cup flange (13) pivotally connected thereto and anchorable in use to a second member. The assembly includes a linear damping device (15) and a mechanism for converting pivotal movement of the hinge into actuation of the damping device, at least over part of the range of this pivotal movement. The movement converting mechanism is arranged to produce the actuation of the damping device (15) through rotational movement about its linear axis via transmission of at least two equal and opposite forces acting symmetrically about this axis.
Abstract:
A damper assembly incorporating a bushing adapted to rotate within a wall structure and engage a post on a bin or other element to be controlled. The bushing defines a hub of an integral, coaxial rotor which rides within a fluid containing housing. The bushing and rotor rotate concurrently about a common axis during rotation of the bin or other device being controlled. The drag on the rotor thereby slows the rotation of the engaged post and the associated bin or other structure being controlled.
Abstract:
The invention relates to a motor vehicle door comprising a door leaf with a drive, a magnetic device as a component of the drive, and at least one sensor which is associated with the door leaf. According to the invention, said magnetic device also comprises a magnetorheological element and/or a magnetohydrodynamic element which can be actuated by at least one magnet.
Abstract:
A rotary damper has a cylindrical housing. A rotor is rotatably supported inside the housing for rotation with respect to the housing by a first bearing and a second bearing. The second bearing has a greater length in the axial direction of the rotor than the first bearing. The rotary damper can be employed in an opening and closing mechanism for a vehicle door.
Abstract:
A balanced hinge device with a brake has a first connector (3) adapted to be fixed to a structure or frame and connected via at least a kinematic element (8) to a second connector (5) adapted to be fixed to a door or a shutter. The device (1) has at least one friction part (9) fixed to at least one among the first connector (3), the second connector (5) and the kinematic element (8). Each friction part (9) slidably contacts, at least at a predetermined rotation arc of one connector (3, 5) with respect to the other connector, a portion of at least one among the first connector (3), the second connector (5) and the kinematic element (8) and with at least a contact (11).
Abstract:
A rotary damper has a damper body having a receiving portion, and a rotor rotatably disposed in the receiving portion of the damper body. A space between an inner circumferential surface of the receiving portion and an outer circumferential surface of the rotor is divided into a plurality of pressure chambers. A rotation speed of the rotor is controlled to be at a low speed by a flow resistance of fluid filled in each of the pressure chambers when the fluid flows through gaps between an inner surface of the receiving portion and an outer surface of the rotor opposed to each other in a direction of a rotation axis of the rotor. The damper body and the rotor are relatively movable in the direction of the rotation axis of the rotor.
Abstract:
A damper roller system is provided. The system includes an external rotating element connected to a bearing housing. The bearing housing is filled with a viscous fluid and includes at least one bearing element immersed in the viscous fluid. The bearing housing is connected to at least one sealing element sealing the viscous fluid inside the bearing housing. The bearing element is connected to a non-rotating shaft having opposite first and second ends. The shaft is held in place at the first end by the bearing element and is rigidly connectable at the second end to an object. The first end is nail-shaped and immersed in the viscous fluid. A rotation of the external rotating element drives a common rotation of the bearing housing and of the bearing element, and shears the viscous fluid, causing a damping motion proportional to a rotational speed of the external rotating element.