Abstract:
The proposed solution in particular relates to a method for adjusting an adjusting part (1) on a vehicle (F), wherein an adjustment of the adjusting part (1) is controlled by using an electronic detection device (2) which detects a potential obstacle in an adjustment path of the adjusting part (1) on the basis of at least one first measured value and generates at least one control signal (r(t)) for controlling the adjustment of the adjusting part (1). At least over a defined time period, a curve of the control signal (r(t)) and/or of the first measured value as well as a curve of at least one second measured value (a(t), i(t), v(t)) changing significantly on collision of the adjusting part (1) with an obstacle are stored so as to be read out and correlated with each other for a subsequent plausibility check.
Abstract:
A drive unit for closing a leaf of a door or a window comprises an energy accumulator for providing a closing force for closing the leaf, a damping device which counteracts the closing force and has an electric motor which can be operated as a generator and can be coupled to an actuating element of the drive unit, and a control device for controlling the electric motor. The control device is designed to determine a nominal path curve which indicates a position of the leaf or a closing speed of the leaf in dependence upon time, and to perform the control of the electric motor in order to damp the closing movement of the leaf on the basis of the established target path curve.
Abstract:
A snubber apparatus comprises a casing defining an inner cavity. A shaft passes through the inner cavity and rotates about its longitudinal axis. The shaft has one or two ends laterally projecting out of the casing and being connected to a moving part of a tool to dampen given motions thereof. A wiper arm is on the shaft so as to rotate therewith the shaft, with a free end in close proximity to the surface portions of the inner cavity. The free end has an arcuate contour complementarily corresponding to a circumferential surface portion. A dam extends from the circumferential surface portion into close proximity to the wiper arm, to divide the inner cavity in two chambers, with movements of the wiper arm changing the volume of the chambers. A hydraulic circuit controls a flow of fluid between chambers to oppose a force to rotation of the shaft.
Abstract:
A brake device for a drivable part, in particular for use for a vehicle flap, in particular in an automobile, includes a drivable load device (11) which can be radially brought into contact with a disc (90) of the drivable part, with a first holding position and a second release position. At least one brake element rests against the periphery (92) of the disc (90) in a frictional manner in the holding position and secures the disc (90) from rotating using a specifiable force. In the release position, the at least one brake element is arranged at a distance from the periphery of the disc (90) and allows a free run of the disc (90), and the load device (11) can be adjusted between the holding position and the release position, preferably by a motor (12). A brake device or a rotating drive with which a drivable part of the drive is secured against a displacement on the basis of the mass of the component to be displaced even when the motor is not being provided with power or is deactivated is achieved in that the first holding position and the second release position are each designed as a metastable holding position.
Abstract:
A door brake system for braking and locking a hinged door of a motor vehicle includes a stop and a base body, which is moved relative to the stop via a swiveling motion of the door. The base body is hinged and/or detachably fastened to the door. The stop is arranged on the door frame or on a body of the motor vehicle. The base body is guided relative to the stop in a positive manner to improve an effect and/or the kinematics of the door brake system.
Abstract:
A snubber apparatus comprises a casing defining an inner cavity. A shaft passes through the inner cavity and rotates about its longitudinal axis. The shaft has one or two ends laterally projecting out of the casing and being connected to a moving part of a tool to dampen given motions thereof. A wiper arm is on the shaft so as to rotate therewith the shaft, with a free end in close proximity to the surface portions of the inner cavity. The free end has an arcuate contour complementarily corresponding to a circumferential surface portion. A dam extends from the circumferential surface portion into close proximity to the wiper arm, to divide the inner cavity in two chambers, with movements of the wiper arm changing the volume of the chambers. A hydraulic circuit controls a flow of fluid between chambers to oppose a force to rotation of the shaft.
Abstract:
The invention relates to a drive arrangement for the motorized adjustment of an adjustment element of a vehicle, wherein at least one drive comprising an electric drive motor and a drive control means and is connected to a supply, wherein the drive is designed in a non-self-locking manner, the drive motor operates as a generator and generates a generator voltage, wherein the drive control means has a driver unit for supplying electrical power to the at least one drive. The invention proposes that the drive control means has a switching device and has a detection device for detecting a non-motorized adjustment of the adjustment element, and that the drive control means, when a predetermined, non-motorized adjustment of the adjustment element is detected, connects the supply voltage to the supply connections of the driver unit by means of the switching device in one switching operation.
Abstract:
In an aspect, a vehicle door control system is provided for a vehicle having a vehicle body and a vehicle door. The door control system includes a check arm mounted to one of the vehicle body and the vehicle door, a check arm holder at least a portion of which is mounted to the other of the vehicle body and the vehicle door, and a controller. The controller is programmed to apply a resistive force on the vehicle door based on a determination of whether an obstacle is approaching the vehicle, data relating to the obstacle, and a position of the vehicle door.
Abstract:
A commercial vehicle used for parcel delivery is installed with a control module. The control module communicates wirelessly with a transmitter to give control to the vehicle operator. The vehicle operator can access the vehicle's cargo compartment through the bulkhead door and/or the rear door solely by using the transmitter as opposed to manually actuating the door latch. A door actuator is added to the bulkhead door such that when the bulkhead door is wirelessly actuated the door opens without operator assistance, and the process of the door opening does not damage the vehicle. Additionally, the vehicle operator can initiate the control module to allow a push-button start and stop of the vehicle's ignition system. Such elements contribute to time savings and cost savings for parcel delivery operators.
Abstract:
A movement damping device travels along a fixed track on roller wheels. Trolleys mounted on the roller wheels support the door along the track for movement of the door. Eddy-current interaction occurs between travelling magnets mounted on the device and fixed side plates of the track. The trolley moves horizontally as the roller wheels travel along horizontal support rails of the track. The track would be fixed to a supporting host structure and opposing side plates of the track support the respective rails. The trolley travels between the side plates when the door moves. The relative motion between the magnets and the side plates causes eddy-currents in the conducting side plates and consequent motion resistance