Abstract:
A motor control circuit provides reduced stopping time. The circuit utilizes n rotational signals whose relative phase differences are proportional to the rotational speed of the motor. Inverted logic signals are formed of these n signals. Circuitry for discriminating the direction of the motor and for determining from the n signals n-1 and/or n inverted signals, the initial change of any of the signals following a reversal of the motor. Upon determining the initial change, a signal is supplied to the motor drive circuit to cause the motor to de-energized. A specific circuit for holding the motor in a stopped condition is disclosed.
Abstract:
An apparatus for an electric drive vehicle which provides linear deceleration via electrical braking. The apparatus monitors vehicle speed and adjusts the duty cycle of a chopper circuit according to look-up tables. These table correlate vehicle speed and desired deceleration rate to braking torque, thereby enabling the apparatus to maintain a preselected deceleration through the entire stopping distance and to precisely position the vehicle.
Abstract:
A brake pulse forming circuit determines the rotational direction of a capstan motor in each edge of signals FG1 and FG2, utilizing D type flip-flops (21, 22, 23 and 24) and an NOR gate (25). A brake pulse f having a longer pulse width supplied from an intermittent driving circuit (10) to brake the capstan motor in a reverse direction is terminated by an AND gate (27), simultaneously with reverse detection of the capstan motor, and is applied to a capstan motor driving circuit as a corrected brake pulse j having a proper pulse width. In addition, a motor drive signal g supplied from the intermittent driving circuit (10) is terminated by an OR gate (26), simultaneously with reverse detection of the capstan motor. However, an EX-OR gate (28) prevents the motor driving signal g from being terminated by erroneous determination of the rotational direction at the time of starting the capstan motor.
Abstract:
A remote control circuit for a hard wired remote control controlling multiple functions in a multiple motor device has a reduced number of wires extending between the hand held control and the motor control circuit. The circuit includes a rectifier for generating a positive control voltage and a negative control voltage which are separately supplied along individual wires to the hand held control, and a single wire extending between the hand held control and the control circuit for each function, the voltage appearing along the wire designating the direction of movement of the function. A pair of parallel connected LEDs sense the polarity of the voltage and energize a triac corresponding to the polarity of the voltage appearing along the control wire to energize the proper winding of a reversible motor.
Abstract:
A plugging defeat system for use with a reversible electric motor having a motor shaft. A slipping clutch-type mechanism is used to sense the speed and direction of the motor and to selectively open forward or reverse enabling switches when the motor reaches a predetermined speed. If operating in the forward direction, the clutch mechanism will open the reverse enabling switch, once the predetermined speed is reached, preventing motor reversal until the speed has fallen to a safe level, and vice versa.
Abstract:
A control circuit is used during slow or stop-motion playback operation of a video tape device to drive video tape intermittently. In order to avoid errors in the stopping position of the tape, a pulse width modulated (PWM) signal is provided to a motor controller circuit associated with the capstan motor of the video tape device. A frequency signal generator coupled to this motor generates a frequency signal that varies with the capstan motor speed, and this frequency signal is provided to a retrigger monostable multivibrator which generates a PWM signal whose duty ratio changes in proportion to the capstan motor speed. A drive pulse generator and a brake pulse generator provide drive start and brake start signals, respectively, when it is desired to commence and stop movement of the tape. A drive circuit, including the retrigger monostable multivibrator, receives the drive start signal, the brake start signal, and the frequency signal to generate the PWM signal which is supplied to the motor controller circuit. The frequency signal is selected to have a pulse rate several tens of times the ripple frequency of the motor's torque ripple characteristic so that inaccuracies in stopping position of the motor are eliminated.
Abstract:
A wiper control device for a vehicle capable of accurately stopping wiper blades always at the lowermost position of a wiping range regardless of the rotating speed of a wiper motor. The wiper control device automatically stops the wiper motor at the lowermost position of the wiper blades with a control circuit which obtains a sliding angle corresponding to the rotating speed of the wiper motor from the rotating speed of the motor and controls to flow an electric current continuously in the motor during the time while the motor reaches a rotating position even after the motor is interrupted by selecting the cam contact position with respect to the annular electrode. Thus, this wiper control device can eliminate to disturb the visual field of a driver with the wiper blades.
Abstract:
A power hoist is disclosed wherein a single operating lever is moved between haul, hold and lock positions. A load may be suspended when the hoist is in hold position by means of braking action which is primarily provided by closing a shunting switch across the leads of a DC motor whereby the motor functions as a brake, which holding action, when necessary, is supplemented by a positive mechanical locking device engageable with the gear train. The combination of electrical shunt holding means with mechanical locking means, both operated by the same lever member enables convenient and improved hoist action in which the load may be securely held in a suspended position without any creepage taking place, and without danger of damage to the mechanical locking system.
Abstract:
A method and apparatus for sensing plugging of a DC electric motor comprising logic circuitry responsive to a direction change command for initiating a plugging signal and additional logic circuitry for maintaining said plugging signal as a function of the percentage on time of a variable time ratio switch supplying power to the motor. Inhibit circuitry is provided to override the plugging signal under operator selected conditions.
Abstract:
An electronic control circuit is provided for a magnetic sound device of the type having a sound recording medium transport, a direct current drive motor for the transport, a main control switch, andd a circuit interconnecting the motor to a direct current power supply through the main control switch in accordance with a first polarity and an audio circuit. The present circuit comprises an auxiliary control switch interposed between the motor and main switch and a switch circuit including first and second transistor switches connected between the main control switch and motor for reversing the polarity of the interconnection between the power supply and motor. A capacitor is interconnected between the motor and the transistor switches for activating the transistor switches during the charge-up time of the capacitor when the auxiliary switch is open. The present circuit further shorts out the audio circuit for a brief time period after the auxiliary switch is opened or closed.