Abstract:
Example motor assemblies for architectural coverings are described herein. An example motor assembly includes a motor, a first switch to trigger the motor to retract an architectural covering, a second switch to trigger the motor to extend the architectural covering, and an actuator positioned to activate the first switch when the actuator is rotated in a first direction and to activate the second switch when the actuator is rotated in a second direction. Also described herein are example lever actuators for motor assemblies of architectural coverings. An example lever actuator detaches from the motor assembly to prevent excess force on the motor assembly that could otherwise detrimentally affect the motor assembly.
Abstract:
An APU has a gas turbine engine and a starter generator to be selectively driven by the gas turbine engine. A sensor senses windmilling of components associated with the starter generator. A lock feature limits rotation within the starter generator when windmilling is sensed. A method of operation is also disclosed.
Abstract:
A power tool includes a housing coupled to an electrical power source, a motor contained in the housing, and a motor control circuit that controls output speed of the motor. A light unit is coupled to the housing to illuminate a work surface. A light unit control circuit controls illumination of the light unit. A switch unit is coupled to the housing and selectively operable to control the operation of the motor control circuit and the light unit control circuit. The light unit control circuit includes a timer configured to cause the light unit to illuminate a first brightness level when the switch unit is actuated, and to remain illuminated at the first brightness level for a predetermined time period after the trigger is actuated. The predetermined time period restarts if the switch unit is not deactivated before the end of the predetermined time period.
Abstract:
A motor control system for deployment in high temperature environments includes a controller; a first half-bridge circuit that includes a first high-side switching element and a first low-side switching element; a second half-bridge circuit that includes a second high-side switching element and a second low-side switching element; and a third half-bridge circuit that includes a third high-side switching element and a third; low-side switching element. The motor controller is arranged to apply a pulse width modulation (PWM) scheme to switch the first half-bridge circuit, second half-bridge circuit, and third half-bridge circuit to power a motor.
Abstract:
Disclosed are a shutdown method for motor and a motor driving circuit using the same. The method comprises: shutting down a higher gate switch and a lower gate switch when a supply voltage decreases, such that the storage capacitor is charged via a back electromotive force, wherein the back electromotive force decreases as the motor gradually stops; driving the motor when the voltage of the storage capacitor is again larger than the first threshold voltage; determining whether the voltage of the storage capacitor is lower than a shutdown threshold voltage when the voltage of the storage capacitor is lower than the first threshold voltage, wherein the shutdown threshold voltage is lower than the first threshold voltage; and turning on the lower gate switch when the voltage of the first threshold voltage is lower than the shutdown threshold voltage, wherein the back current is related to the back electromotive force.
Abstract:
A method is provided for identifying a battery pack that is operably coupled to a battery charger. The method comprises: measuring voltage at a plurality of designated terminals of a first battery pack while the battery pack is coupled to the battery charger; determining how many of the designated terminals are connected to a reference voltage, such as battery positive; and identifying an attribute of the battery pack based on how many of the designated terminals are connected to the reference voltage.
Abstract:
A method is provided for operating a power tool having a motor powered by a battery. The method includes: delivering power from the battery to the motor in accordance with an operator input; detecting a condition of the power tool indicating a shutdown of the power is imminent; and fading the power delivered from the battery to the motor, in response to the detected condition, through the use of a controller residing in the power tool.
Abstract:
A motor drive device has a spindle motor driver adapted to receive electric power from a power supply line to drive a spindle motor; an isolation switch adapted to connect and disconnect an application terminal of a power supply voltage to and from the power supply line, and a current monitor adapted to monitor a first current flowing into the isolation switch. The current monitor includes a mirror switch arranged to connect a first terminal of the mirror switch to the application terminal of the power supply voltage and adapted to be turned on and off by the same control signal as the isolation switch; a bias generator adapted to bias a second terminal of the mirror switch to the same voltage as the power supply line; a resistor which converts a second current flowing into the mirror switch into a first voltage; and a current limit signal generator adapted to compare at least one of the first voltage, a second voltage obtained by level-shifting the first voltage, and a third voltage obtained by dividing the first voltage with a predetermined threshold voltage to generate a current limit signal.
Abstract:
The present invention advantageously provides a motorized roller shade that includes a shade tube, a motor/controller unit and a power supply unit. The motor/controller unit is disposed within the shade tube, and includes a bearing, rotatably coupled to a support shaft, and a DC gear motor. The output shaft of the DC gear motor is coupled to the support shaft such that the output shaft and the support shaft do not rotate when the support shaft is attached to the mounting bracket.
Abstract:
A method for moving a movable element into a block position includes providing a supply voltage to an electric motor associated with the movable element for the motor to generate a motor current and drive the element with motor power dependent on the motor current in order to move the element along a path. Upon the element being moved into a block position of the path, the supply voltage provided to the motor is controlled such that the motor current generated by the motor is continuously reduced over a time period to zero. For instance, the supply voltage is pulse-width modulated at a decreasing pulse duty ratio over the time period such that the motor current generated by the motor is continuously reduced over the time period to zero.