Abstract:
The present disclosure relates to a method in a measuring node and a measuring node for handling measurements performed on signals received over a wireless interface in a wireless communication system. The method comprises performing (202) measurements on the received signals according to a first measurement configuration, detecting (204) that a change from the first measurement configuration to a second measurement configuration has occurred, performing (206) measurements on the received signals according to the second measurement configuration, and using (210) the measurements performed according to the first measurement configuration and the measurements performed according to the second measurement configuration for radio resource management tasks. At least one of the first measurement configuration and the second measurement configuration comprises a signal activity pattern.
Abstract:
The invention relates to methods and devices for supporting configuration of a measurement gap pattern for a user equipment requiring measurement gaps for performing an inter-frequency measurement. A radio network node receives an indication from the user equipment that the user equipment is going to perform an inter-frequency measurement for positioning, which inter-frequency measurement requires measurement gaps. The radio network node may determine a measurement gap pattern for performing the inter-frequency measurement and may signal, to the user equipment, information to initiate use of the determined measurement gap pattern in the user equipment. Alternatively the user equipment configures the measurement gap pattern itself based on a set of pre-defined rules.
Abstract:
Methods (100) and apparatuses (12, 24, 38) taught herein advantageously facilitate use of timing measurements in wireless communication networks (10) where radio signal timing measurements involve signals at different carrier frequencies. The methods and apparatuses in particular compensate such timing measurements for expected discrepancies in the measurements that arise from frequency-dependent differences in the propagation behavior of the radio signals being measured. In a non-limiting example, measurements at two or more frequencies may be compensated for the frequency distance between those frequencies, or with respect to a reference frequency. In such cases, timing measurements determined for one or more other radio signals are compensated as a function of the frequency distance between the reference frequency and the frequencies of such other radio signals.
Abstract:
A method in a network node for performing network tasks based on a user equipment trajectory includes the network node receiving cell change information from a user equipment wherein the cell change information further includes user equipment trajectory data based on cell parameters of visited cells in a user equipment trajectory. The method in a user equipment for collecting cell change information associated with a cell change includes the user equipment storing the cell change information within the user equipment. The cell change information is sent to the network node for performing network tasks.
Abstract:
Embodiments relate to device-to-device (D2D) communications in a communications network (1), wherein the communications network (1) comprises a first user equipment (10), a first radio network node (14) serving the first user equipment (10), a second user equipment (12). and a D2D capable radio network node (18,18). The first user equipment (TO) is configured to recognize a second user equipment (12) to have a D2D communication with and to perform a cell change from the first radio network node (14) to the D2D capable radio network node (16,18), when the first radio network node (14) does not have D2D capability.
Abstract:
Wireless communication network terminal operation is disclosed. The network comprises wireless network nodes having first and second downlink transmission modes. The first mode involves normal operation of a particular network node and is applicable when a number of active terminals in a cell associated with the particular network node is greater than a first mode threshold value. The second mode involves restricted downlink transmission of the particular network node and is applicable when the number of active terminals in the cell associated with the particular network node is not greater than a second mode threshold value. A cell identity is detected for a cell associated with a wireless network node of the wireless communication system. A current downlink transmission mode of the node is detected as the first or second downlink transmission mode, and an operation of the terminal is adapted based on the detected current downlink transmission mode.
Abstract:
A wireless device, a network apparatus, a test equipment and a method in a heterogeneous radio-communication system configured to perform and report measurements in view of patterns including at least two types of subframes are provided. The wireless device has a transceiver and a processing unit. The transceiver is configured to send and to receive signals from more than one cell, and to receive information defining a first pattern related to first cells. The processing unit is configured to determine a second pattern related to second cells based on the first pattern and at least one of an indication or predefined rule relating the first pattern and the second pattern, to perform measurements related to the signals, and to report, to a network node, measurement results based on the measurements, the measurement results being related to signals received from a number of one or more cells.
Abstract:
The present invention relates to a method and a device for supporting positioning with a minimum of assistance data signalling. The method in the radio device that shall perform the positioning measurements comprises determining (440) a positioning reference signal pattern, based on a cell identity and a pre-defined mapping between the cell identity and the positioning reference signal pattern, and performing (450) positioning measurements based on the determined positioning reference signal pattern.
Abstract:
Processing implemented by a method and apparatus herein advantageously improves the quality of measurements performed on non-serving frequencies and/or the quality of serving cell data reception by intelligently configuring measurement gaps during which a wireless device (36) is to perform those measurements. Such intelligent configuration entails obtaining (100) information that identifies, for each of a plurality of candidate non-serving frequencies, one or more measurement bandwidths over which one or more corresponding measurements on that non-serving frequency are to be performed. In at least some embodiments, such candidate non-serving frequencies represent frequencies for which the device (36) has requested measurements gaps. Regardless, processing further includes selecting (110) a subset of the candidate non-serving frequencies based on the measurement bandwidths. Processing finally includes configuring (120) measurement gaps during which the wireless device (36) is to perform one or more measurements on the selected non-serving frequencies.
Abstract:
Methods and devices are provided wherein a user equipment transmits using at least two uplink transmit antennas and receives a set of control signals in the downlink direction from a cellular network. The user equipment estimates a received signal quality for each control signal in said set of control signals and determines, based on said received signal quality, which control signals that have been reliably received. The user equipment derives one or more parameters related to the uplink transmit diversity operation using a subset of control signals from the set of control signals, said subset only including control signals determined as reliably received; and transmits in the uplink direction applying the derived one or more parameters to control the uplink transmit diversity operation. The accuracy of the transmit diversity parameter values derived/set by the UE can be improved. This will enhance the performance of the uplink transmit diversity and will also reduce interference to the neighbor cells.