Abstract:
An electrode for use on a medical device is disclosed. The electrode may have a main body of electrically conductive material extending along an axis and may have a proximal end and a distal end. The electrode may also include a magnetic resonance imaging (MRI) tracking coil disposed in the body. The MRI tracking coil may comprise electrically insulated wire. A catheter including an electrode, as well as a method for determining the location of an electrode, are also disclosed.
Abstract:
A medical catheter includes a deflectable and compressible catheter shaft; a pull ring near a distal end of the catheter shaft; a distal tip that includes a tip element and a mounting shaft; and an attachment apparatus for securely attaching the distal tip to the catheter shaft, the attachment apparatus including a compression ring which compresses the catheter shaft and the mounting shaft together. The compression ring can be located around the catheter shaft to compress the catheter shaft against an outer surface of the mounting shaft, or within the catheter shaft to compress the catheter shaft outwardly against an inner surface of the mounting shaft. The catheter can be a non-irrigated ablation catheter, with the tip element being a tip electrode, and it can be an irrigated ablation catheter, with the distal tip including a fluid manifold.
Abstract:
A catheter assembly includes an inner liner made of flexible material and an outer layer having a steering mechanism. A catheter assembly is provided that includes an inner liner made of flexible material, and an outer layer having a steering mechanism that includes at least one wire and a corresponding lumen for each of the at least one wire through which the respective wire may travel. The outer layer includes a braided wire assembly that includes at least two wires braided into a wire mesh, and further includes a see-through portion positioned proximate a pull wire extraction location to facilitate extraction.
Abstract:
Disclosed herein are ablation systems and methods for providing feedback on lesion formation in real-time. The methods and systems assess absorptivity of tissue based on a degree of electric coupling or contact between an ablation electrode and the tissue. The absorptivity can then be used, along with other information, including, power levels and activation times, to provide real-time feedback on the lesions being created. Feedback may be provided, for example, in the form of estimated lesion volumes and other lesion characteristics. The methods and systems can provide estimated treatment times to achieve a desired lesion characteristic for a given degree of contact, as well as depth of a lesion being created. The degree of contact may be measured using different techniques, including the phase angle techniques and a coupling index.
Abstract:
Methods for processing two-dimensional ultrasound images from an intracardiac ultrasound imaging catheter provide improved image quality and enable generating three-dimensional composite images of the heart. Two-dimensional ultrasound images are obtained and stored in conjunction with correlating information, such as time or an electrocardiogram. Images related to particular conditions or configurations of the heart can be processed in combination to reduce image noise and increase resolution. Images may be processed to recognize structure edges, and the location of structure edges used to generate cartoon rendered images of the structure. Structure locations may be averaged over several images to remove noise, distortions and blurring from movement.
Abstract:
A method of ablating a tissue site includes at least two stages. A first stage involves conducting bipolar ablation between a first pair of electrodes situated in an opposing arrangement on opposing sides of the tissue site to form a pair of opposing first stage ablation regions extending from respective sides of the tissue towards the center. A second stage involves conducting bipolar ablation between a second pair of electrodes situated in a diametrical arrangement with respect to the first stage ablation regions, which forms a second stage ablation region intermediate the pair of first stage ablation regions. The second stage completes the ablation through the entire depth of the tissue site. Since the overall process can accommodate incomplete ablation during the first stage, lower power, reduced ablation times or both may be used during the first stage, avoiding overheating and with a decrease in ablated tissue volume.
Abstract:
A method of manufacturing a catheter shaft includes extruding an inner polymeric layer having a main lumen and two or more side lumens spaced about the main lumen; forming an outer polymeric layer about the inner polymeric layer; and inserting at least one elongate member, such as a wire, through each side lumen of the inner polymeric layer. The side lumens are less than about 1/5 the size of the main lumen. The method may further include the step of forming a braided layer between the inner polymeric layer and the outer polymeric layer. In an alternate embodiment, the method includes co-extruding an inner polymeric layer and a multi-lumen layer, the multi-lumen layer having two or more side lumens; forming an outer polymeric layer about the multi-lumen layer; and inserting at least one elongate member through each side lumen. Catheter assemblies made according to the described methods are also disclosed.
Abstract:
A deflectable medical device incorporates a strut that is configured to reduce or eliminate axial shortening of the deflectable portion of the medical device, for example, the deflectable distal end portion of a catheter or access sheath. The strut may is coaxially disposed in the medical device in the section that is contemplated to undergo the repeated deflection. The strut provides improved column strength and axial restoration. The strut may be stent-like device, an elongate device having opposing ends coupled by a connecting lattice involving a plurality of helical connecting elements or a tube having a plurality of circumferentially-extending slots arranged in longitudinally-extending rows.
Abstract:
A catheter with a mechanism for omni-directional deflection of a catheter shaft includes a shaft assembly and a controller. The shaft assembly includes a first tubular component that has a preformed curvilinear distal section, a second, substantially straight tubular component with a main axis and an outer shaft. The first and second components are configured for slidable movement therebetween while preserving common rotation so that when the second component is axially moved in a distal direction, the second component deflects the preformed curvilinear section towards the main axis while orientation of the outer shaft is preserved. The controller is configured to effect relative axial movement between the first and second components as well as to effect rotation of the first and second components (and thus also of the preformed curvilinear distal section) without any rotation of the shaft relative to the handle. Varying the deflection of the preformed curvilinear section in combination with variable rotational movement achieves omni-directional distal tip bending.
Abstract:
A system for enabling a user to remotely control a robotic medical device system includes a motion capture apparatus to capture motion of a user in a sensing volume and generate indicative output data. The system includes a control unit configured to execute gesture recognition logic that recognizes a user gesture based on analysis of the indicative output data. The control unit executes interpreter logic that is configured to translate the recognized user gesture into a corresponding robotic medical device control command configured to control an aspect of the operation of the robotic medical device system.