Abstract:
A PDP includes a barrier rib formed between an upper substrate and a lower substrate to define discharge regions, and a phosphor layer including red, green, and blue phosphor layers corresponding to the discharge regions. A height of the green phosphor layer is lower than a height of the barrier rib.
Abstract:
A plasma display panel (PDP) is characterized such that the strength of barrier ribs can be maintained, impurity gases can be easily exhausted, and a discharge gas can be smoothly filled in the discharge cells when manufacturing the PDP. The PDP includes: a transparent front substrate; a rear substrate disposed facing the front substrate; a plurality of discharge electrodes disposed between the front substrate and the rear substrate; a plurality of barrier ribs disposed between the front substrate and the rear substrate, and defining a plurality of discharge cells which are spaces for generating a discharge, the barrier ribs having side walls that define an exhaust channel formed in at least a portion between the discharge cells, at least one of the side walls having an arc-like shape; a phosphor layer disposed in each of the discharge cells; and a discharge gas filled in the discharge cells.
Abstract:
A Plasma Display Panel (PDP) includes: a front substrate, a common electrode and a scan electrode arranged on a lower surface of the front substrate, a bus electrode electrically connected to the common electrode and the scan electrode, a front dielectric layer covering the common electrode, the scan electrode, and the bus electrode, a rear substrate facing the front substrate, an address electrode arranged on an upper surface of the rear substrate to cross the bus electrode, a barrier rib arranged between the front and rear substrates, and a phosphor layer arranged on a discharge space defined by the barrier rib. The bus electrode includes a display unit bus electrode arranged on a display area that displays pixels, and a non-display unit bus electrode arranged on a non-display area electrically connected to the display unit bus electrode and connected to an external terminal. The display unit bus electrode and the non-display unit bus electrode have different structures. The non-display unit bus electrode arranged on the non-display area is a single-layered structure while the display unit bus electrode arranged on the display area is a double-layered structure.
Abstract:
A plasma display device includes: a plasma display panel; a chassis base supporting the plasma display panel, the chassis base being parallel to the plasma display panel; a thermally conductive layer arranged between the plasma display panel and the chassis base, the thermally conductive layer being adjacent to the plasma display panel; and a thermally non-conductive layer arranged between the thermally conductive layer and the chassis base.
Abstract:
A plasma display device which improves the adhesion rate of a thermal conductive medium. A chassis base is disposed substantially parallel to a plasma display panel. A thermally conductive medium is disposed between the plasma display panel and the chassis base and is closely adhered to both the plasma display panel and the chassis base. An adhesive pad is interposed between the plasma display panel and the chassis base along the edge of the thermally conductive medium and is adhered to both the plasma display panel and the chassis base. The thermally conductive medium includes a plurality of thermally conductive particles of high thermal conductivity.
Abstract:
A plasma display panel. A first substrate and a second substrate are provided opposing one another with a predetermined gap therebetween. Address electrodes are formed on the second substrate. Barrier ribs are mounted between the first substrate and the second substrate defining a plurality of discharge cells. Phosphor layers are formed within the discharge cells. Discharge sustain electrodes are formed on the first substrate. The discharge sustain electrodes include bus electrodes that extend such that a pair of the bus electrodes is provided for each of the discharge cells, and protrusion electrodes extending from each of the bus electrodes such that a pair of opposing protrusion electrodes is formed within an area corresponding to each discharge cell. A distal end of each protrusion electrode includes an indentation such that a gap is formed between the pair of opposing protrusion electrodes, and an aperture is formed in each protrusion electrode.
Abstract:
A plasma display panel includes a substrate, a dielectric layer formed on a top surface of the substrate, and partitions spaced a predetermined distance apart from each other and having a snaking or meandering shape. The partitions form channels having main discharge spaces and auxiliary discharge spaces alternately arranged and connected to each other. Red (R), green (G) and blue (B) phosphors are coated on the main discharge spaces in a triangular shape and where G and R phosphors are aligned with each other in a horizontal direction. The thicknesses of partitions forming the main discharge spaces where the R and G phosphors are coated are greater than thicknesses of the partitions forming the main discharge spaces where the B phosphor is coated.
Abstract:
A Light Emitting Diode (LED) driver apparatus is provided. The LED driver apparatus includes: a Pulse Width Modulation (PWM) signal generator configured to generate a PWM signal, a DC-DC converter configured to provide a driving voltage of a plurality of LED arrays by using the generated PWM signal, and a sensor configured to determine whether at least one LED array among the plurality of LED arrays is in an open state in response to the driving voltage being higher than or equal to a preset first reference voltage, and the preset first reference voltage is higher than the driving voltage applied when the plurality of LED arrays are each in a working state.
Abstract:
A Light Emitting Diode (LED) driver apparatus is provided. The LED driver apparatus includes: a Pulse Width Modulation (PWM) signal generator configured to generate a PWM signal, a DC-DC converter configured to provide a driving voltage of a plurality of LED arrays by using the generated PWM signal, and a sensor configured to determine whether at least one LED array among the plurality of LED arrays is in an open state in response to the driving voltage being higher than or equal to a preset first reference voltage, and the preset first reference voltage is higher than the driving voltage applied when the plurality of LED arrays are each in a working state.
Abstract:
A ESD protection circuit includes: a first clamp connected between a first power line and a ground line; a second clamp connected between the ground line and a second power line; a first output buffer connected between the first power line and the ground line, and providing a first operating voltage; a second output buffer connected between the ground line and the second power line, and providing a second operating voltage; a first switch unit configured to transfer the first operating voltage to an I/O pad; a second switch unit configured to transfer the second operating voltage to the I/O pad; a first transfer unit comprising one or more diodes connected in series between the first power line and the I/O pad; and a second transfer unit comprising one or more diodes connected in series between the I/O pad and the second power line.