Abstract:
A device includes a gate stack formed over a channel in a semiconductor substrate. The gate stack includes a layer of gate insulator material, a layer of gate metal overlying the layer of gate insulator material, and a layer of contact metal overlying the layer band edge gate metal. The device further includes source and drain contacts adjacent to the channel. The source and drain contacts each include a layer of the gate metal that overlies and is in direct electrical contact with a doped region of the semiconductor substrate, and a layer of contact metal that overlies the layer of gate metal.
Abstract:
Provided is a process and device for exchanging heat energy between three or more streams in a microchannel heat exchanger which can be integrated with a microchannel reactor to form an integrated microchannel processing unit. The combining of a plurality of integrated microchannel devices to provide the benefits of large-scale operation is enabled. In particular, the microchannel heat exchanger enables flexible heat transfer between multiple streams and total heat transfer rates of about 1 Watt or more per core unit volume expressed as W/cc.
Abstract:
An MOSFET device having a Silicide layer of uniform thickness, and methods for its fabrication, are provided. One such method involves depositing a metal layer over wide and narrow contact trenches on the surface of a silicon semiconductor substrate. Upon formation of a uniformly thin amorphous intermixed alloy layer at the metal/silicon interface, the excess (unreacted) metal is removed. The device is annealed to facilitate the formation of a thin silicide layer on the substrate surface which exhibits uniform thickness at the bottoms of both wide and narrow contact trenches.
Abstract:
The application provides a method for partitioning a watermark image with western language characters, comprising: partitioning a western language characters image along rows and columns to form a plurality of character image blocks; identifying valid character image blocks from the formed character image blocks; counting sizes of the valid character image blocks to determine if the image corresponds to a document with a large font size or a document with a small font size; dividing words in the image into a plurality of groups, wherein each divided group in the document with large font size has different numbers of words from that with small font size; and dividing equally the divided word groups into multiple portions corresponding to watermark image blocks. The application further provides a device for partitioning a watermark image with western language characters. The operability of watermark embedding process can be ensured through the above technical solution.
Abstract:
A semiconductor is formed on an SOI substrate, such as an extremely thin SOI (ETSOI) substrate, with increased extension thickness. Embodiments include semiconductor devices having an epitaxially formed silicon-containing layer, such as embedded silicon germanium (eSiGe), on the SOI substrate. An embodiment includes forming an SOI substrate, epitaxially forming a silicon-containing layer on the SOI substrate, and forming a gate electrode on the epitaxially formed silicon-containing layer. After gate spacers and source/drain regions are formed, the gate electrode and underlying silicon-containing layer are removed and replaced with a high-k metal gate. The use of an epitaxially formed silicon-containing layer reduces SOI thickness loss due to fabrication process erosion, thereby increasing extension thickness and lowering extension resistance.
Abstract:
A method of forming a metal semiconductor alloy that includes forming an intermixed metal semiconductor region to a first depth of a semiconductor substrate without thermal diffusion. The intermixed metal semiconductor region is annealed to form a textured metal semiconductor alloy. A second metal layer is formed on the textured metal semiconductor alloy. The second metal layer on the textured metal semiconductor alloy is then annealed to form a metal semiconductor alloy contact, in which metal elements from the second metal layer are diffused through the textured metal semiconductor alloy to provide a templated metal semiconductor alloy. The templated metal semiconductor alloy includes a grain size that is greater than 2× for the metal semiconductor alloy, which has a thickness ranging from 15 nm to 50 nm.
Abstract:
A accelerometer includes a substrate define a stationary electrode thereon, a first moveable mass defining a conductive-layer thereon facing the stationary electrode, a plurality of first elastic elements coupled with a peripheral side of the first moveable mass, a first fixed element surrounding the first moveable mass and fixedly attached to the substrate, a plurality of first fixed electrodes extending outwardly from the first fixed element, a second moveable mass surrounding the first fixed electrodes, a plurality of first moveable electrodes extending inwardly from the second moveable mass toward the first fixed element and parallel to the first fixed electrodes, respectively, a plurality of second elastic elements coupled with a peripheral side of the second moveable mass, and a second fixed element surrounding the second moveable mass and fixedly attached to the substrate.
Abstract:
Silicidation techniques with improved rare earth silicide morphology for fabrication of semiconductor device contacts. For example, a method for forming silicide includes implanting a silicon layer with an amorphizing species to fond an amorphous silicon region in the silicon layer and depositing a rare earth metal film on the silicon layer in contact with the amorphous silicon region. A silicide process is then performed to combine the rare earth metal film and the amorphous silicon region to form a silicide film on the silicon layer.
Abstract:
In one exemplary embodiment, a program storage device readable by a machine, tangibly embodying a program of instructions executable by the machine for performing operations, said operations including: depositing a first layer having a first metal on a surface of a semiconductor structure, where depositing the first layer creates a first intermix region at an interface of the first layer and the semiconductor structure; removing a portion of the deposited first layer to expose the first intermix region; depositing a second layer having a second metal on the first intermix region, where depositing the second layer creates a second intermix region at an interface of the second layer and the first intermix region; removing a portion of the deposited second layer to expose the second intermix region; and performing at least one anneal on the semiconductor structure.
Abstract:
The invention provides methods, apparatus and systems in which there is partial boiling of a liquid in a mini-channel or microchannel. The partial boiling removes heat from an exothermic process.