摘要:
A semiconductor device having a transistor channel with an enhanced stress is provided. To achieve the enhanced stress transistor channel, a nitride film is preferentially formed on the device substrate with little to no nitride on a portion of the gate stack. The nitride film may be preferentially deposited only on the silicon substrate in a non-conformal layer, where little to no nitride is deposited on the upper portions of the gate stack. The nitride film may also be uniformly deposited on the silicon substrate and gate stack in a conformal layer, with the nitride film proximate the upper regions of the gate stack preferentially removed in a later step. In some embodiments, nitride near the top of the gate stack is removed by removing the upper portion of the gate stack. In any of the methods, stress in the transistor channel is enhanced by minimizing nitride deposited on the gate stack, while having nitride deposited on the substrate.
摘要:
A structure is provided in which a semiconductor device region has a first portion and a second portion, and a device disposed in the first and second portions. A current conducting member extends horizontally over the first portion but not over the second portion. A dielectric region, having a substantially planar upper surface, is disposed over the member, the dielectric region overlying substantially all of an area of the semiconductor device region that is occupied by the device. A dielectric barrier layer overlies the upper surface of the dielectric region, over substantially all of the area that is occupied by the device. The barrier layer is adapted to substantially prevent diffusion of one or more materials from above the barrier layer into the dielectric region. A contact via extends through the barrier layer and the dielectric region, the contact via in conductive communication with at least one of the member and the second portion of the semiconductor device region.
摘要:
A p-type field effect transistor (PFET) and an n-type field effect transistor (NFET) of an integrated circuit are provided. A first strain is applied to the channel region of the PFET but not the NFET via a lattice-mismatched semiconductor layer such as silicon germanium disposed in source and drain regions of only the PFET and not of the NFET. A process of making the PFET and NFET is provided. Trenches are etched in the areas to become the source and drain regions of the PFET and a lattice-mismatched silicon germanium layer is grown epitaxially therein to apply a strain to the channel region of the PFET adjacent thereto. A layer of silicon can be grown over the silicon germanium layer and a salicide formed from the layer of silicon to provide low-resistance source and drain regions.
摘要:
A planar NFET on a strained silicon layer supported by a SiGe layer achieves reduced external resistance by removing SiGe material outside the transistor body and below the strained silicon layer and replacing the removed material with epitaxial silicon, thereby providing lower resistance for the transistor electrodes and permitting better control over Arsenic diffusion.
摘要:
An e-fuse structure and method has an anode; a fuse link (a first end of the fuse link is connected to the anode); a cathode (a second end of the fuse link opposite the first end is connected to the cathode); and a silicide layer on the fuse link. The silicide layer has a first silicide region adjacent the anode and a second silicide region adjacent the cathode. The second silicide region comprises an impurity not contained within the first silicide region. Further, the first silicide region is thinner than the second silicide region.
摘要:
An improved SRAM and fabrication method are disclosed. The method comprises use of a nitride layer to encapsulate PFETs and logic NFETs, protecting the gates of those devices from oxygen exposure. NFETs that are used in the SRAM cells are exposed to oxygen during the anneal process, which alters the effective work function of the gate metal, such that the threshold voltage is increased, without the need for increasing the dopant concentration, which can adversely affect issues such as mismatch due to random dopant fluctuation, GIDL and junction leakage.
摘要:
A semiconductor structure. The semiconductor structure includes: a semiconductor substrate which includes a top substrate surface which defines a reference direction perpendicular to the top substrate surface and further includes a first semiconductor body region and a second semiconductor body region; a first gate dielectric region and a second gate dielectric region on top of the first and second semiconductor body regions, respectively; a first gate electrode region on top of the semiconductor substrate and the first gate dielectric region; a second gate electrode region on top of the semiconductor substrate and the second gate dielectric region; and a gate divider region in direct physical contact with the first and second gate electrode regions. The gate divider region does not overlap the first and second gate electrode regions in the reference direction.
摘要:
A semiconductor structure and a method for forming the same. The method includes providing a semiconductor structure which includes a semiconductor substrate. The semiconductor substrate includes (i) a top substrate surface which defines a reference direction perpendicular to the top substrate surface and (ii) first and second semiconductor body regions. The method further includes forming (i) a gate divider region and (ii) a gate electrode layer on top of the semiconductor substrate. The gate divider region is in direct physical contact with gate electrode layer. A top surface of the gate electrode layer and a top surface of the gate divider region are essentially coplanar. The method further includes patterning the gate electrode layer resulting in a first gate electrode region and a second gate electrode region. The gate divider region does not overlap the first and second gate electrode regions in the reference direction.
摘要:
Disclosed are embodiments of a lithographic patterning method that incorporates a combination of photolithography and self-assembling copolymer lithography techniques in order to create, on a substrate, a grid-pattern mask having multiple cells, each with at least one sub-50 nm dimension. The combination of different lithographic techniques further allows for precise registration and overlay of the individual grid-pattern cells with corresponding structures within the substrate. The resulting grid-pattern mask can then be used, in conjunction with directional etch and other processes, to extend the cell patterns into the substrate and, thereby form openings, with at least one sub-50 nm dimension, landing on corresponding in-substrate structures. Once the openings are formed, additional structures can be formed within the openings.
摘要:
The present invention provides an interconnect structure (of the single or dual damascene type) and a method of forming the same, in which a dense (i.e., non-porous) dielectric spacer is present on the sidewalls of a dielectric material. More specifically, the inventive structure includes a dielectric material having a conductive material embedded within at least one opening in the dielectric material, wherein the conductive material is laterally spaced apart from the dielectric material by a diffusion barrier, a dense dielectric spacer and, optionally, an air gap. The presence of the dense dielectric spacer results in a hybrid interconnect structure that has improved reliability and performance as compared with existing prior art interconnect structures which do not include such dense dielectric spacers. Moreover, the inventive hybrid interconnect structure provides for better process control which leads to the potential for high volume manufacturing.