摘要:
A semiconductor device and a method of manufacturing the same is disclosed. A trench is formed in an active region of a semiconductor substrate. A doped layer is formed on the inner walls of the trench. The trench is filled up with a first semiconductor layer. A gate insulating layer is formed on the first semiconductor layer and the substrate. Two gate electrodes are formed on the gate insulating layer such that the trench is located in between two gate electrodes. First and second impurity regions are formed in the substrate on both sides of each of the gate electrodes. Since the doped layer is locally formed in the trench area, the source and drain regions are completely separated from the heavily doped layer to weaken the electric field of PN junction, thereby improving refresh and preventing punchthrough between the source and drain.
摘要:
Provided is a method of fabricating a recess transistor in an integrated circuit device. In the provided method, a device isolation region, which contacts to the sidewall of a gate trench and a substrate region remaining between the sidewall of the device isolation region and the sidewall of the gate trench, is etched to expose the remaining substrate region. Thereafter, the exposed portion of the remaining substrate region is removed to form a substantially flat bottom of the gate trench. The recess transistor manufactured by the provided method has the same channel length regardless of the locations of the recess transistor in an active region.
摘要:
A self-aligned inner gate recess channel in a semiconductor substrate includes a recess trench formed in an active region of the substrate, a gate dielectric layer formed on a bottom portion of the recess trench, recess inner sidewall spacers formed on sidewalls of the recess trench, a gate formed in the recess trench so that an upper portion of the gate protrudes above an upper surface of the substrate, wherein a thickness of the recess inner sidewall spacers causes a center portion of the gate to have a smaller width than the protruding upper portion and a lower portion of the gate, a gate mask formed on the gate layer, gate sidewall spacers formed on the protruding upper portion of gate and the gate mask, and a source/drain region formed in the active region of the substrate adjacent the gate sidewall spacers.
摘要:
A memory cell of a semiconductor device and a method for forming the same, wherein the memory cell includes a substrate having active regions and field regions, a gate layer formed over the substrate, the gate layer including a plurality of access gates formed over the active regions of the substrate and a plurality of pass gates formed over the field regions of the substrate, first self-aligned contact regions formed between adjacent pass gates and access gates, and second self-aligned contact regions formed between adjacent access gates, wherein a width of each of the first self-aligned contact regions is larger than a width of each of the second self-aligned contact regions.
摘要:
A memory cell of a semiconductor device and a method for forming the same, wherein the memory cell includes a substrate having active regions and field regions, a gate layer formed over the substrate, the gate layer including a plurality of access gates formed over the active regions of the substrate and a plurality of pass gates formed over the field regions of the substrate, first self-aligned contact regions formed between adjacent pass gates and access gates, and second self-aligned contact regions formed between adjacent access gates, wherein a width of each of the first self-aligned contact regions is larger than a width of each of the second self-aligned contact regions.
摘要:
A semiconductor device having a decoupling capacitor and a method of fabricating the same are provided. The semiconductor device includes a semiconductor substrate having a cell region, a first peripheral circuit region, and a second peripheral circuit region. At least one channel trench is disposed in the cell region of the semiconductor substrate. At least one first capacitor trench is disposed in the first peripheral circuit region of the semiconductor substrate, and at least one second capacitor trench is disposed in the second peripheral circuit region of the semiconductor substrate. A gate electrode is disposed in the cell region of the semiconductor substrate and fills the channel trench. A first upper electrode is disposed in the first peripheral circuit region of the semiconductor substrate and fills at least the first capacitor trench. A second upper electrode is disposed in the second peripheral circuit region of the semiconductor substrate and fills at least the second capacitor trench. A gate dielectric layer is interposed between the channel trench and the gate electrode. A first dielectric layer is interposed between the semiconductor substrate of the first peripheral circuit region having the first capacitor trench and the first upper electrode and has the same thickness as the gate dielectric layer. A second dielectric layer is interposed between the semiconductor substrate of the second peripheral circuit region having the second capacitor trench and the second upper electrode and has a different thickness from the first dielectric layer.
摘要:
A self-aligned inner gate recess channel in a semiconductor substrate includes a recess trench formed in an active region of the substrate, a gate dielectric layer formed on a bottom portion of the recess trench, recess inner sidewall spacers formed on sidewalls of the recess trench, a gate formed in the recess trench so that an upper portion of the gate protrudes above an upper surface of the substrate, wherein a thickness of the recess inner sidewall spacers causes a center portion of the gate to have a smaller width than the protruding upper portion and a lower portion of the gate, a gate mask formed on the gate layer, gate sidewall spacers formed on the protruding upper portion of gate and the gate mask, and a source/drain region formed in the active region of the substrate adjacent the gate sidewall spacers.
摘要:
Provided are a semiconductor device and a method for manufacturing the semiconductor device. The semiconductor device includes an isolation insulating film, an epitaxial silicon layer, a junction blocking insulating film, a gate stack, and source and drain junctions. The isolation insulating film is formed on a semiconductor substrate to define an active area. The epitaxial silicon layer is formed in the active area of the semiconductor substrate and surrounded by the isolation insulating film. The junction blocking insulating film is formed in the epitaxial silicon layer. The gate stack is formed over the epitaxial silicon layer so that the junction blocking insulating film is buried under approximately the center of the gate stack. The source and drain junctions are formed adjacent the sidewalls of the gate stack. Accordingly, a short circuit between source/drain junctions in a bulk area caused by the unwanted diffusion of the junctions can be prevented.
摘要:
An isolation layer having a first depth is formed from an upper face of a substrate. Source/drain regions including junctions are formed in the substrate. Each of the junctions has a second depth substantially smaller than the first depth. A first recess is formed in the substrate by a first etching process. A protection layer pattern is formed on a sidewall of the first recess. A second recess is formed beneath the first recess. The second recess has a width substantially larger than that of the first recess. The second recess is formed by a second etching process using an etching gas containing an SF6 gas, a Cl2 gas and an O2 gas. A gate insulation layer is formed on surfaces of the first and the second recesses. The second recess having an enlarged shape may reduce a width of the junction between the gate electrode and the isolation layer so that a leakage current generated through the junction may decrease.
摘要:
Wirings including first conductive layer patterns and insulating mask layer patterns are formed on a substrate. Insulating spacers are formed on sidewalls of the wirings. Self-aligned contact pads including portions of a second conductive layer are formed to contact with surfaces of the insulating spacers and to fill up a gap between the wirings. An interlayer dielectric layer is formed on the substrate where the contact pads are formed and is then partially etched to form contact holes exposing the contact pads. A selective epitaxial silicon layer is formed on the contact pads exposed through the contact holes to cover the insulating mask layer patterns. Thus, a short-circuit between the lower wiring and an upper wiring formed in the contact holes is prevented.