Abstract:
A method of making a light weight component is provided. The method including the steps of: forming a metallic foam core into a desired configuration; applying an external metallic shell to an exterior surface of the metallic foam core after it has been formed into the desired configuration; and attenuating the component to a desired frequency by forming a plurality of openings in the external metallic shell.
Abstract:
A gas turbine engine including a compressor has a first compressor section and a second compressor section, a combustor fluidly connected to the compressor, and a turbine fluidly connected to the combustor. The turbine includes a first turbine section and a second turbine section. A first shaft connects the first compressor section and the first turbine section. A second shaft connects the second compressor section and the second turbine section. A fan is connected to the first shaft via a geared architecture. The first shaft includes at least one magnetic section. An electromagnet is disposed radially outward of the first shaft at an axial location of the at least one magnetic section, relative to an axis defined by the gas turbine engine.
Abstract:
A combustor wall is provided for a turbine engine. The combustor wall includes a shell, a heat shield and a combustion chamber. The heat shield is connected to the shell by a bonded connection, and defines a portion of the combustion chamber. A cooling cavity is defined between the shell and the heat shield.
Abstract:
A gas turbine engine includes a compressor portion, a combustor fluidly connected to the compressor portion via a primary flowpath, and a turbine portion fluidly connected to the combustor via the primary flowpath. The turbine section includes a first turbine portion and a second turbine portion. The second turbine portion is at a low pressure relative to the first turbine portion. A first turbine shaft is supported relative to a second turbine shaft by a first bearing, the first bearing having an inner diameter and an outer diameter, with the inner diameter of the first bearing being connected to one of the first shaft and the second shaft and the outer diameter of the first bearing being connected to the other of the first shaft and the second shaft.
Abstract:
A gas turbine engine includes a fan section and a speed change mechanism for driving the fan section. A first fan section support bearing is mounted forward of the speed change mechanism and a second fan section bearing is mounted aft of the speed change mechanism.
Abstract:
A gas turbine engine has a fan rotor including at least one stage, with the at least one stage delivering a portion of air into a low pressure duct, and another portion of air into a compressor. The compressor is driven by a turbine rotor, and the fan rotor is driven by a fan drive turbine. A channel selectively communicates air from the low pressure duct across a boost compressor.
Abstract:
Gas turbine engine systems and related methods involving multiple gas turbine cores are provided. In this regard, a representative gas turbine engine includes: an inlet; a blade assembly mounted to receive intake air via the inlet; and multiple gas turbine cores located downstream of the blade assembly, each of the multiple gas turbine cores being independently operative in a first state, in which rotational energy is provided to rotate the blade assembly, and a second state, in which rotational energy is not provided to rotate the blade assembly.
Abstract:
A method for forming a metallic structure having multiple layers includes providing a main tool having a main formation surface corresponding to a desired shape of a first layer of material. The method also includes depositing the first layer of material on the main formation surface using a cold-spray deposition technique. The method also includes positioning a secondary tool having a secondary formation surface in a portion of a first volume defined by a first surface of the first layer of material. The method also includes depositing a second layer of material on the secondary formation surface using the cold-spray deposition technique. The method also includes removing the secondary tool such that the first volume is positioned between the first layer of material and the second layer of material.
Abstract:
A rotor assembly is provided for a gas turbine engine. This rotor assembly includes a first rotor disk, a second rotor disk, a plurality of rotor blades and a plurality of disk mounts. The first rotor disk is configured to rotate about a rotational axis. The second rotor disk is configured to rotate about the rotational axis. The rotor blades are arranged circumferentially around the rotational axis. Each of the rotor blades is axially between and mounted to the first rotor disk and the second rotor disk. The disk mounts connect the first rotor disk and the second rotor disk together. The disk mounts include a first disk mount. The first disk mount is integral with the first rotor disk. The first disk mount projects axially through the second rotor disk.
Abstract:
A power takeoff and gearbox system of a multi-spool gas turbine engine includes a high rotor towershaft operably connected to and driven by a first spool of the gas turbine engine, a first gearbox operably connected to the high rotor towershaft, a low rotor towershaft operably connected to and driven by a second spool of the gas turbine engine, and a second gearbox operably connected to the low rotor towershaft. The high rotor towershaft is located at a first case of the gas turbine engine and the low rotor towershaft is located at a second case of the gas turbine engine axially forward of the first case.