Abstract:
A lighter than air airship is disclosed that has an internal weight supporting structure. The weight supporting structure allows the airship to enjoy the advantages of both static and dynamic lift. The airship disclosed herein is lifted by both lighter than air gasses as well as wings attached to the internal weight supporting structure. A cargo container for use with the airship is also disclosed.
Abstract:
An aircraft has a fuselage designed essentially as an aerostatic lift body. Combined lift and propulsion devices are articulated on the fuselage, are provided with propellers and form propulsion units and which in each case can tilt between a lift position, in which the respective propeller rotation plane is essentially horizontal and a propulsion position, in which the respective propeller rotation plane is essentially vertical. Additionally the propeller rotation plane has all-round inclination relative to the output shaft of the associated drive device.
Abstract:
A hybrid aircraft is taught having VTOL, R-VTOL and S-STOL capabilities. The aircraft has a lifting body hull and four wing sections arranged in tandem which are pivotally moveable about their neutral axis. Each wing section has mounted thereon a pivotal propeller-rotor assembly for providing thrust substantially in a range between horizontal and vertical. The wings and propellers are integrated to the hull by an outrigger designed to be very stiff and to distribute forces from the wings and propellers to the hull. The hull is shaped to provide aerodynamic lift in an airstream and to facilitate construction by minimizing the number of panels of differing curvature required. The hull is formed of a pressure tensioned frame covered with semi-rigid panels, a lower cladding frame and bow and stem cladding nose cones. The semi-rigid panels covering the frame are formed of gas-tight and abrasion resistant laminate material and are connected to the frame by means of an interface rib and latch system. The frame is formed of a plurality of curved elongate segments arranged in series orthogonal to the long axis of the hull and connected by means of torsion members. A turbo-electric drive system can be used to drive the aircraft. An advanced hybrid aircraft is also described having about 8 to 12 high speed fans in place of the propeller-rotors.
Abstract:
Provided is a system for point to point wireless power transmission including: a plurality of autonomous and semi-autonomous unmanned systems configured as a mobile transmitting and/or receiving power station, through which unmanned systems can navigate, maneuver, beam ride, and recharge from point to point. Provided is a method of adapting unmanned systems to receive and transmit power point-to-point amongst themselves. The method includes controlling a swarm formed from a plurality of autonomous synchronized unmanned systems to form a larger transmitter and receiver for a mobile power station.
Abstract:
A hybrid stratospheric airship for the combined and optimized use of aerostatic and aerodynamic force, including: an inflatable central body; a first and second inflatable wing extending from the central body protruding laterally from two opposite sides of the central body, each wing having a portion proximal to the central body, an end portion distal from said central body, a leading edge, and a trailing edge; an outer shell having a main shell portion associated with the main body, and a first and a second side shell portion associated with each wing, respectively; at least one main spar extending transversely to the central body, which supports the first and second wing and crosses the central body, the at least one main spar a rectilinear spar interposed between the leading edge and the trailing edge of the first and second wings, and connected to the distal end portions of the wings.
Abstract:
An autonomous unmanned aerial vehicle detecting system for monitoring a geographic area includes an unmanned blimp adapted to hover in air, at least one camera mounted on the blimp to scan at least a portion of the geographic area, a location sensor to determine a location of the blimp, and a controller arranged in communication with blimp, the at least one camera, and the location sensor. The controller is configured to position the blimp at a desired location in the air based on inputs received from the location sensor, and monitor the geographic area based on the images received from at least one camera. The controller is also configured to detect a presence of an unmanned aerial vehicle within the geographic area based on the received images, and determine whether the detected unmanned aerial vehicle is an unauthorized unmanned aerial vehicle based on the received images.
Abstract:
A hybrid airship (drone, UAV) capable of significantly extended flight times can use one of two technologies, or both together. The first technology uses a combination of a lifting gas (such as hydrogen or helium) in a central volume or balloon and multirotor technology for lift and maneuvering. The second technology equips the airship with an on board generator to charge the batteries during flight for extended flight operations, with an internal combustion engine (such as a high power to weight ratio gas turbine engine) driving the generator. A quadcopter or other multicopter configuration is desirable.
Abstract:
A system comprising an unmanned aerial vehicle (UAV) having wing elements and tail elements configured to roll to angularly orient the UAV by rolling so as to align a longitudinal plane of the UAV, in its late terminal phase, with a target. A method of UAV body re-orientation comprising: (a) determining by a processor a boresight angle error correction value bases on distance between a target point and a boresight point of a body-fixed frame; and (b) effecting a UAV maneuver comprising an angular role rate component translating the target point to a re-oriented target point in the body-fixed frame, to maintain the offset angle via the offset angle correction value.
Abstract:
The invention relates to a multipurpose airship and, more particularly, to a hybrid dirigible. The airship comprises a body (2) having a parallelepiped shape and docking means (8) comprising four rods connected by a frame and designed to be extractable from the body (2), the ends of these rods being provided each with at least one vacuum cup for adhering to a substantially vertical surface of a building. The docking means (8) are provided with grips adapted to engage with the docking means (8) of another airship of the same design. The invention also relates to a set of airships including at least two said airships. The proposed airship does not require a lot of space for its take-off and provides fast and secure evacuation of people from tower buildings. In addition, the invention provides the possibility of varying the airship payload directly in flight depending of specific needs.