Abstract:
A drive unit includes a gear set driving a drive pulley that in turn drives a flexible drive member which is attached to a driven member by an attachment assembly that travels in a channel. The attachment assembly is attached to the flexible drive member by a coupler that has teeth that extend through respective windows of the flexible drive member. The coupler is disposed between side walls of a yoke and attached to a bridge wall of the yoke. An outer shoe engages each side wall of the yoke. The attachment assembly includes an optional spring to tension the flexible drive member and the shoes have optional flexible tapered fingers to stabilize the drive pulley. The flexible drive member and the spring are trapped between the coupler and the bridge wall of the yoke. In an alternate arrangement, the flexible drive member is trapped between the coupler and fingers of the shoes that extend behind the flexible drive member and through spaces between adjacent teeth of the coupler and into sockets of the other shoe. The flexible drive member may be a drive chain or a drive belt having spaced windows.
Abstract:
The invention relates to a method for controlled braking of an electrically powered lifting action in the event of a failure, such that at least one of the nominal values for “rotational direction” and/or “operating speed” and/or “door position” and/or “motor capacity” and/or “motor current” is ascertained and compared with an actual value, and such that a motorized braking process or motorized stopping process is triggered by a departure of the actual value from the nominal value that lies outside a predetermined range. In addition the invention relates to a device for applying said method.
Abstract:
An active break release device externally attached to a door controller. The door controller includes a housing for receiving a first motor which rotates a rotary shaft to reel the door; a braking device installed around the periphery of the rotary shaft. The active break release device comprises: at least a brake releasing rod, one end of which is to activate the braking device while the other end of which extends to the outside of the door controller; at least a second motor, for moving the other end of the brake releasing rod; a circuit having a backup power source used to temperately supply electricity to the second motor if electricity fails, so that the one end releases the braking.
Abstract:
A opening control apparatus for a sliding door of a vehicle, includes a driving source, a clutch arranged to connect the driving source and the sliding door in an engaged state and to disconnect the driving source and the sliding door in a disengaged state, and a control section. The control section brings the clutch from the disengaged state to the engaged state when a measured distance of movement of the sliding door from a stop position to a position in one of an opening direction and a closing direction reaches a first predetermined distance and then a measured distance of movement of the sliding door from the position in the one of the opening and closing directions reaches a second predetermined distance, and drives the sliding door to move in the one of the opening and closing directions by the driving source.
Abstract:
A drive mechanism includes an electric motor, a rotor driven by the electric motor, and a worm screw driven by the rotor. The drive mechanism further includes a wheel driven by the worm screw, the wheel transmitting movement of the electric motor to a vehicle closure, and a clutch on the rotor connecting the worm screw to the electric motor or disconnecting the worm screw from the electric motor.
Abstract:
An unlock mechanism for a rotary door operator of a transit vehicle includes a pivotally disposed lock member adapted for rotating into an unlock position and activating a valve for discharging the fluid pressure from a drive cylinder to enable a manual opening of the door. A spring is provided for biasing the lock member into a lock position. The lock member may be moved into the unlock position either with a cable or a lever handle.
Abstract:
An operating mechanism for an open/close object comprising a driving device for driving and opening the open/close object, a position detecting device for detecting an open position of the open/close object (1), and a fully open position storage device for storing a fully open position of the open/close object, wherein, when the driving device drives and opens the open/close object, the driving device is stopped in a fully open recognition position stored in the fully open position storage device or a position a fixed amount short of the fully open recognition position. When a current position of the open/close object after completion of the opening drive by the driving device is different from the fully open recognition position (#1), the fully open position storage device sets a new fully open recognition position (#2).
Abstract:
A system and method for minimizing door related injuries are disclosed. Briefly, a mechanism requiring little or no external power is used to vary the force needed to open a door. If an obstruction (i.e. a person, pet, etc) is within the sweep of the opening door, the force needed by the user to push open the door will be increased, to give the user tactile feedback that an accident may be imminent. The feedback mechanism can be implemented in a variety of ways, including embodiments that require no external power or battery. A sensor is used to detect the presence of an obstruction within the sweep of the door. In a further embodiment, a mechanism is used to slow or stop a door from closing if an obstruction (such as a finger) is in the return path of the door.
Abstract:
A powered sliding device includes a wire drum (16) connected to a vehicle sliding door (11) through wire cables (18, 19), a motor (14) for rotating the wire drum, a clutch mechanism (25) provided between the motor and the wire drum, a rotational member (85) rotated integrally with the wire drum, detection apparatus (86) for detecting the rotation of the rotational member, and a housing (74). The housing includes a first space (76) accommodating the wire drum and communicating with the outside of the housing through the wire cables and a second space accommodating the rotational member and the detection apparatus, and a housing body (73) provided between the first space and the second space which separates the first space and the second space.
Abstract:
A door actuating system has a fractional horsepower motor mounted on the door adjacent its free edge, driving a clutch connected to a duplex capstan pulley that is wrapped by two tensioned flexible static lines, for opening/closing movement ‘along the line’. The motor also drives a gear that engages a rack projecting from the door frame, to displace the door relative to its frame. Rotation of the gear is read by a rotary encoder, which feeds a microprocessor, to continuously monitor the location, speed and direction of motion of the door, for both the ‘on’ and the ‘off’ condition of the electric motor. A latching clip over-rides action of the original door latch.