Abstract:
A resin intake manifold is provided with an integrally formed base member. The base member has a U-shaped curved distribution passage lower surface wall portion, an engine mounting flange portion formed in one end of the distribution passage lower surface wall portion, and a surge tank peripheral wall portion formed in another end and a lower surface side of the distribution passage lower surface wall portion. A resonator peripheral wall portion is integrally formed in a dead space in a lower surface side of the distribution passage lower surface wall portion and between the surge tank peripheral wall portion and the engine mounting flange portion. In accordance with the structure in which the wall itself constituting the resonator is formed by the structure member, it is possible to structure the resonator without enlarging a size of the intake manifold and without lowering the strength.
Abstract:
An EGR system has an EGR distributor in the form of a single plate integrally equipped with an exhaust gas passage and a coolant passage for recirculated exhaust gas therewith. The lengths of each exhaust gas passages for the recirculated exhaust gas to reach each cylinder are equal to each other, whereby the amount of the exhaust gas recirculated to each intake passage is same and the overall efficiency of the EGR system is improved. The EGR distributor is preferably manufactured in the form of a single component by AL die casting method.
Abstract:
A synthetic resin intake manifold body and a synthetic resin passage structural member are respectively provided with a body side joining flange and a structural member side joining flange that are continuously formed along a joining line. A protrusion is provided on the body side joining flange and a welding protrusion and an inside and an outside control wall are provided on the structural member side joining flange. When the synthetic resin passage structural member is positioned and aligned with respect to the synthetic resin intake manifold body along the joining line prior to welding, a volume of an inside burr retaining groove is set to be larger than a volume of an outside burr retaining groove.
Abstract:
An air intake, especially for internal combustion engines with a V-shaped cylinder arrangement, which is composed of two units (16a, 16b). From the two units (16a, 16b) extend the intake ducts (19a, 19b), each associated with one cylinder bank (11) of the internal combustion engine. By dividing the air intake device into two units (16a, 16b), the unit (16a) can be mounted first on the internal combustion engine, a free space (20) for the mounting tool being necessary. Then the unit (16b) is placed and bolted on, the air intake ducts (19b) being able to run through the free space (20) in the hatched area (23), since the unit (16a) is already installed. The advantage of this air intake tube configuration is a substantially greater geometric freedom of design.
Abstract:
The present invention relates to an intake manifold or distributor for an air feed circuit for an internal-combustion engine comprising, on the one hand, an intake or plenum chamber of elongate shape and provided at one of its longitudinal ends with an intake aperture and, on the other hand, at least two pipes laterally connected to said chamber, said pipes extending at least partially around said intake chamber from their inlet apertures opening therein and having a curved structure over at least a portion of their length.Manifold characterised in that it consists of two parts (6 and 7) produced by injection moulding of thermoplastic material and joined together in the region of peripheral joint zones located on a joining surface (8′) crossing said manifold (1).
Abstract:
An intake manifold is assembled from a near manifold component which is positioned near an engine, a far manifold component which is positioned far from the engine and a middle manifold component which is positioned between the near and far manifold components. The near manifold component includes first path-forming parts forming the lower parts of the intake paths. The middle manifold component includes second path-forming parts which are joined on and vibration-welded to the first path-forming parts. The middle manifold component further includes third path-forming parts which extend in the vertical direction in a curve. Further, the far manifold component includes fourth path-forming parts which are vibration-welded to the third path-forming parts.
Abstract:
A method for manufacturing an engine intake manifold assembly is provided. The method includes forming a top, middle, and bottom section of the manifold assembly in an injection molding process, each including cavities defined with positive draft angles, the cavities defining a plurality of internal passageways in an assembled state of the manifold assembly. The top, middle, and bottom sections are joined to form the manifold assembly through vibration welding or ultrasonic welding. An engine intake manifold assembly having top, middle, and bottom sections joined through vibration welding or ultrasonic welding is also provided.
Abstract:
A resin intake manifold is provided with two separated bodies manufactured by connecting protrusions of weld portions of the separated bodies to each other in accordance with a vibration welding, and a cover wall in which one of the weld portions is arranged in an inner side or an outer side of the protrusion with leaving space with the protrusion. The protrusions of the weld portions are respectively provided with parallel protrusion portions extending in parallel to a vibrating direction of the vibration welding, and a cover wall arranged at a position in an orthogonal direction to the vibrating direction in the parallel protrusion portions is provided with an extension portion extending to the separated body in the other side welded to the separated body provided with the cover wall, in such a manner as to prevent a burr generated at a time of welding the parallel protrusion portion from getting over the cover wall arranged at the position in the orthogonal to the vibrating direction in the parallel protrusion portion. A recess groove receiving the extension portion is arranged in a side of the other side separated body.
Abstract:
An intake arrangement for an internal combustion engine, including an intake manifold including an intake collector disposed above the engine body, a plurality of branch pipes extending from the intake collector to an intake side of the engine body over above the engine body in a curved state, and a connecting wall disposed between the branch pipes. The branch pipes extend in a direction substantially perpendicular to a longitudinal direction of the intake collector and are arranged with space between adjacent ones of the branch pipes. The connecting wall covers the space between the adjacent ones of the branch pipes and coextends with the branch pipes. The connecting wall has an outside air introducing opening opposed to the intake side of the engine body.
Abstract:
In the dual port intake device of the present invention, the intake manifold assembly comprises three blocks each molded from a plastic material by injection molding, the three blocks consisting of a first block defining a half of the surge tank, a second block defining a half of the individual intake pipes and a third block defining a remaining half of the surge tank and a remaining half of the individual intake pipes. Thereby, the intake manifold assembly may be provided with various features for defining a pair of intake pipe sections arranged in a mutually parallel relationship while being made to be suitable for an injection molding process. Because the surge tank are defined by the first and third blocks (optionally with the aid of the second block) while the individual intake pipes are defined by the second and third blocks (optionally with the aid of the first block), the intake manifold assembly essentially consisting of three blocks can internally define essential features required for a dual port intake device without requiring additional component members.