Abstract:
An apparatus for ascertaining properties of a light beam, comprises a means for splitting a measured beam out from the light beam and comprises at least one detector that at least partially receives the measured beam. A polarization-influencing means is arranged in the beam path of the measured beam in order to enhance reliability and reproducibility.
Abstract:
A spectral-domain optical coherence tomography system using a cross-dispersed spectrometer is disclosed. The interfered optical signal is dispersed by a grating into several orders of diffraction, and these orders of diffraction are separated by an additional dispersive optical element. The spectral interferogram is recorded by a set of linear detector arrays, or by a two-dimensional detector array.
Abstract:
A method for determining clinical and/or chemical parameters (S1) in a medium (10), utilizing a laser unit, for emitting coherent light waves (6) and a phototransistor unit, for receiving light waves (8). At least some of the emitted light waves (6) are transferred to the medium (10) and the phototransistor unit waves (8) measures at least some of the light waves (8) that are reflected in the medium (10), the parameters (S1) being determined as a result of the characteristics of the emitted and received light waves (6; 8). The fact that light waves (6) are emitted into the medium (10) by a laser unit (2) and that the light waves (8) that are reflected in the medium (10) are measured by a phototransistor (4) enables the parameters (S1) that occur in the target area of the laser beam to be determined advantageously in a processing and control unit.
Abstract:
Methods and systems for real-time monitoring of optical signals from arrays of signal sources, and particularly optical signal sources that have spectrally different signal components. Systems include signal source arrays in optical communication with optical trains that direct excitation radiation to and emitted signals from such arrays and image the signals onto detector arrays, from which such signals may be subjected to additional processing.
Abstract:
A device for selectively detecting specific wavelength components of a light beam includes a spectral spreading element for spectrally spreading the light beam, and a detector array arranged downstream of the element. The detector array includes light-insensitive regions and light-sensitive regions. The element and the detector array are matched to each other so that selectable wavelength components of the light beam hit the light-insensitive regions and remaining wavelength components of the light beam hit the light-sensitive regions.
Abstract:
A plurality of configurations is simultaneously formed in a material by a single laser beam having a desired distribution pattern of wavelengths. An input laser beam has an initial wavelength distribution pattern. The initial wavelength distribution pattern is adjusted or modified into a desired final wavelength distribution pattern. For example, the initial wavelength distribution pattern is a wide range of wavelengths in a single bell-curve distribution while the desired final wavelength distribution pattern has a specific number of sharp peaks each over a predetermined narrow range. The laser beam having the desired final wavelength distribution pattern is focused upon on a material. Because of the multiple peaks in the wavelength distribution, the laser beam is focused at a plurality of the focal distances. A number of structures is simultaneously formed in a material at the multiple focal points or at multiple locations/depths when the above laser beam is projected onto the material.
Abstract:
Light from an object moving through an imaging system is collected, dispersed, and imaged onto a time delay integration (TDI) detector that is inclined relative to an axis of motion of the object, producing a pixilated output signal. In one embodiment, the movement of the image object over the TDI detector is asynchronous with the movement of the output signal producing an output signal that is a composite of the image of the object at varying focal point along the focal plane. In another embodiment, light from the object is periodically incident on the inclined TDI detector, producing a plurality of spaced apart images and corresponding output signals that propagate across the TDI detector. The inclined plane enables images of FISH probes or other components within an object to be produced at different focal points, so that the 3D spatial relationship between the FISH probes or components can be resolved.
Abstract:
A device for selectively detecting specific wavelength components of a light beam includes a spectral spreading element for spectrally spreading the light beam, and a detector array arranged downstream of the element. The detector array includes light-insensitive regions and light-sensitive regions. The element and the detector array are matched to each other so that selectable wavelength components of the light beam hit the light-insensitive regions and remaining wavelength components of the light beam hit the light-sensitive regions.
Abstract:
An apparatus for ascertaining properties of a light beam, comprises a means for splitting a measured beam out from the light beam and comprises at least one detector that at least partially receives the measured beam. A polarization-influencing means is arranged in the beam path of the measured beam in order to enhance reliability and reproducibility.
Abstract:
A color separation method and system wherein an optical spectrum is separated into optical wavelength ranges and wherein the optical signals of the separated wavelength ranges are further separated temporally. The optical spectrum can be spatially dispersed and the optical signals can be temporally dispersed, with three optical signals representing primary colors, such as red, green and blue.