摘要:
A field emission type display device capable of preventing a variation in luminance of the display device due to a variation in ambient temperature. A resistive layer is formed on cathode electrodes arranged in a display region and conical emitters are arranged on the resistive layer. The resistive layer is made of a semiconductor material, resulting in being varied in resistance depending on a temperature. A monitor resistive pattern made of the same material as the resistive layer is arranged so as to measure the resistance variation in the form of a voltage variation through an OP amplifier 11, which is then fed to the control circuit. The control circuit controls a gate voltage depending on the resistance to prevent a variation in luminance of the display device.
摘要:
Thin-film edge emission devices and methods for forming are provided. The emitters are formed to have extended edges. They are formed by oblique deposition on a surface of material which extends from a substrate. The material is substantially removed to leave the thin-film emitter. A gate may then be formed around the emitter. Arrays of such thin-film emitters may be used in a variety of electronic devices.
摘要:
A gated electron-emitter is fabricated according to the process in which charged particles are directed towards a track-susceptible layer (48) to form charged-particle tracks (50B.sub.1) through the track-susceptible layer. Apertures (52.sub.1) are formed through the track-susceptible layer by etching along the charged-particle tracks. A gate layer (46) is etched through the apertures to form gate openings (54.sub.1) through the gate layer. An insulating layer (24) is etched through the gate openings to form dielectric open spaces (56.sub.1, 94.sub.1, 106.sub.1, or 114.sub.1) through the insulating layer down to a resistive layer (22B) of an underlying conductive region (22). Electron-emissive elements (30B, 30/88D.sub.1, 98/102.sub.1, or 118.sub.1) are formed in the dielectric open spaces over the resistive layer.
摘要:
A cold cathode structure, useful for field emission displays, is disclosed. A thin resistive silicon film is disposed on a glass substrate; conductive emitter tips are disposed on top thereof. An alloy of amorphous silicon and amorphous carbon is used for the emitter tips. The proportion of the carbon in the alloy increases, gradually or abruptly, from the base to the top of the emitter tips. The carbon gradient is implemented during the process step, in which an n-type silicon layer is formed from which the emitter tips are made in subsequent masking and etching steps. The amount of carbon makes the emitter tips harder and gives lower work function at greater stability. Moreover, the carbon gradient allows for additional sharpening of the emitter tips.
摘要:
An electron emission device comprises an electron emission electrode with a pointed end and a counter electrode positioned opposite to the pointed end, both formed by fine working of a conductive layer laminated on an insulating substrate.
摘要:
Disclosed is planar and vertical cold cathode emitter elements including an semiconducting diamond emitter portion having a high thermal resistance and a high breakdown voltage, thereby suppressing the deterioration of the electron emission characteristics and enabling the operation with a high electric power.
摘要:
A field emitter cold cathode has a substrate possessing a first main surface on one side of itself and a second main surface on the other side of itself and has windows formed in itself. An emitter layer is formed on the first main surface side of the substrate, and has emitters disposed at the positions of the windows. A gate electrode layer is formed on the second main surface side of the substrate. In addition, openings are so formed as to enclose untouched the periphery of at least the leading end part of the emitters.
摘要:
Applicants have discovered methods for making, treating and using diamonds which substantially enhance their capability for low voltage emission. Specifically, applicants have discovered that defect-rich diamonds--diamonds grown or treated to increase the concentration of defects--have enhanced properties of low voltage emission. Defect-rich diamonds are characterized in Raman spectroscopy by a diamond peak at 1332 cm.sup.-1 broadened by a full width at half maximum .DELTA.K in the range 5-15 cm.sup.-1 (and preferably 7-11 cm.sup.-1). Such defect-rich diamonds can emit electron current densities of 0.1 mA/mm.sup.2 or more at a low applied field of 25 V/.mu.m or less. Particularly advantageous structures use such diamonds in an array of islands or particles each less than 10 .mu.m in diameter at fields of 15 V/.mu.m or less.
摘要:
A thin-film edge field emitter device includes a substrate having a first rtion and having a protuberance extending from the first portion, the protuberance defining at least one side-wall, the side-wall constituting a second portion. An emitter layer is disposed on the substrate including the second portion, the emitter layer being selected from the group consisting of semiconductors and conductors and is a thin-film including a portion extending beyond the second portion and defining an exposed emitter edge. A pair of supportive layers is disposed on opposite sides of the emitter layer, the pair of supportive layers each being selected from the group consisting of semiconductors and conductors and each having a higher work function than the emitter layer.
摘要:
An electric field emission device includes an electrode that includes a layer having a dense array of discrete, solid microstructures disposed on at least a portion of one or more surfaces of a substrate, the microstructures having an areal number density of greater than 10.sup.7 /cm.sup.2, the microstructures being individually conformally overcoated with one or more layers of an electron emitting material, the overcoated electron emitting material being disposed on at least a portion of the microstructures and have a surface morphology which is nanoscopically rough. A method for preparing the electrode used in the invention is discussed.
摘要翻译:电场发射装置包括电极,其包括布置在基底的一个或多个表面的至少一部分上的离散的,固体微结构的密集阵列的层,所述微结构具有大于107 / cm 2的面密度密度, 微结构单独地由一层或多层电子发射材料共涂覆,外涂电子发射材料设置在微结构的至少一部分上并具有纳米尺度粗糙的表面形态。 讨论了本发明中使用的电极的制备方法。