Abstract:
A medical system for ablating a tissue site with real-time monitoring during an electroporation treatment procedure. A pulse generator generates a pre-treatment (PT) test signal having a frequency of at least 1 MHz prior to the treatment procedure and intra-treatment (IT) test signals during the treatment procedure. A treatment control module determines impedance values from the PT test signal and IT test signals and determines a progress of electroporation and an end point of treatment in real-time based on the determined impedance values while the treatment progresses.
Abstract:
An indwelling venous catheter and method capable of destroying undesirable cellular growth is provided. The catheter includes a shaft having at least one lumen and adapted to be placed inside a vein for long term use. A plurality of electrodes are positioned near a distal section of the shaft and are adapted to receive from a voltage generator a plurality of electrical pulses in an amount sufficient to cause destruction of cells in the undesirable cellular growth that have grown around the shaft. In one aspect of the invention, a probe is configured to be removably insertable into the at least one lumen and the electrodes are positioned near the distal section of the probe.
Abstract:
A valve for controlling material flow through a catheter, comprises a first flexible member including a first moveable element, wherein, when the first moveable element is in the open position, material may flow past the first flexible member through a first lumen of the catheter and, when the first moveable element is in the closed position, flow through the first lumen is prevented and a first biasing member coupled to the first flexible member for biasing the first moveable member toward the closed position.
Abstract:
A radiation applicator with a dielectric body (2) surrounding the antenna. The dielectric body (2) is comprised of three sections (3, 4 and 5) with different dielectric constants to provide broad-band matching of the applicator to surrounding material. Washers (10) and (11) are mounted on the antenna to act as reflectors.
Abstract:
An apparatus and method for performing noninvasive treatment of the human face and body by electroporation in lieu of cosmetic surgery is provided. The apparatus comprises a high voltage pulse generator and an applicator having two or more electrodes in close mechanical and electrical, contact with the patient's skin for applying the pulses to the patient's skin. The applicator may consist of two pieces with one electrode having a sharp tip and another having a flat surface. High voltage pulses delivered to the electrodes create at the tip of the sharp electrode an electric field high enough to cause death of relatively large subcutaneous fat cells by electroporation. Moving the electrode tip along the skin creates a line of necrotic subcutaneous fat cells, which later are metabolized by the body. Multiple applications of the electrode along predetermined lines on the face or neck create shrinkage of the skin and the subcutaneous fat volume underlying the treated area.
Abstract:
An energy delivery probe and method of using the energy delivery probe to treat a patient is provided herein. The energy delivery probe has at least one probe body having a longitudinal axis and at least a first trocar and a second trocar. Each trocar comprises at least two electrodes that are electrically insulated from each other, and each electrode is independently selectively activatable. An insulative sleeve is positioned in a coaxially surrounding relationship to each of the first trocar and the second trocar. The probe also has a switching means for independently activating at least one electrode. The method involves independently and selectively activating the first and second electrodes to form an ablation zone, then repeating the ablation by delivering energy to a second set of electrodes, producing one or more overlapping ablation zone, and eliminating the need to reposition the ablation probes.
Abstract:
An energy delivery probe for use in tissue ablation and method of use is presented. The energy delivery device has at least a first energy delivery member and a second energy delivery member that have handle members positioned along a longitudinal axis, each handle member having a proximal and distal end. The distal end of the first handle member is releasably coupled to the proximal end of the second handle member and a portion of each member is defined in a coaxially surrounding relationship to each other along the longitudinal axis. The method of using the probe involves identifying a tissue to be ablated, providing the energy delivery probe, inserting at least a portion of the energy delivery probe into the identified tissue, delivering electrical energy through the energy delivery probe to the identified tissue, and ablating the identified tissue such that at least a first ablation zone is formed.
Abstract:
An apparatus and method for performing non-invasive treatment of the human face and body by electroporation in lieu of cosmetic surgery is provided. The apparatus comprises a high voltage pulse generator and an applicator having two or more electrodes in close mechanical and electrical contact with the patient's skin for applying the pulses to the patient's skin. The applicator may consist of two pieces with one electrode having a sharp tip and another having a flat surface. High voltage pulses delivered to the electrodes create at the tip of the sharp electrode an electric field high enough to cause death of relatively large subcutaneous fat cells by electroporation. Moving the electrode tip along the skin creates a line of necrotic subcutaneous fat cells, which later are metabolized by the body. Multiple applications of the electrode along predetermined lines on the face or neck create shrinkage of the skin and the subcutaneous fat volume underlying the treated area.
Abstract:
The present invention provides catheter compositions that provide anti-thrombogenic properties while not adversely impacting mechanical properties. All embodiments of the present invention comprise a catheter that comprises a fluoropolymer additive with specific compositions and/or purity levels.
Abstract:
Restenosis or neointimal formation may occur following angioplasty or other trauma to an artery such as by-pass surgery. This presents a major clinical problem which narrows the artery. The invention provides a balloon catheter with a particular electrode configuration. Also provided is a method whereby vascular cells in the area of the artery subjected to the trauma are subjected to irreversible electroporation which is a non-thermal, non-pharmaceutical method of applying electrical pulses to the cells so that substantially all of the cells in the area are ablated while leaving the structure of the vessel in place and substantially unharmed due to the non-thermal nature of the procedure.