Abstract:
The variable bitrate coding method according to the invention comprises an iterative process including a first analysis pass and a second prediction pass and followed by a last control step for adjusting said stepsize with respect to said target bitrate. According to the invention, a picture re-arrangement step is provided between the analysis and prediction steps of one iteration, in order to encode with an improved quality the picture sequence.
Abstract:
Semiconductor device having on a single substrate (1) at least one memory cell (3) and at least one logic transistor (25); the at least one memory cell having a floating gate (5), a tunnel oxide layer (11) between the floating gate and the substrate (1), a control gate (15), and a control oxide layer (13) between the control gate (15) and the floating gate (5); the at least one logic transistor (25) having a logic transistor gate (5null, 15null) and a logic transistor gate oxide (11null) between the logic transistor gate (5null, 15null) and the substrate (1), the tunnel oxide layer (11) of the memory cell (3) and the logic transistor gate oxide (11null) having a same or substantially same predetermined first thickness. The invention also relates to a method of manufacturing such a device and to such a device that also comprises a high voltage transistor (17) which is optionally made so as to be an integral part of at least the memory cell (3).
Abstract:
A positioning device comprising a first part (1) which is movable relatively to a second part (2) in an X-direction and a Y-direction, said first part (1) comprising a carrier (5) on which a system of magnets (3) is arranged according to a pattern of rows (7) and columns (8) extending parallel to the X-direction and the Y-direction, respectively. The magnets in each row and column are arranged according to a Halbach array, i.e. the magnetic orientation of successive magnets in each row (7) and each column (8) rotates 90null counterclockwise. The second part (2) comprises an electric coil system (4) with two types of electric coils (C1, C2), one type having an angular offset of null45null, and the other type having an offset of null45null with respect to the X-direction. The magnet configuration causes a very strong magnetic field.
Abstract:
An encoding circuit transforms a picture signal into blocks of, for example, 8*8 coefficients, in which each block of coefficients is read motion- adaptively. In the case of motion within a sub-picture, the block of coefficients is read in such an order that the obtained series of coefficients includes, as it were, two interleaved sub-series. The first series starts with a dc component. In a first embodiment, the second series starts with the most relevant motion coefficient. In a second embodiment, two interlaced sub-fields are separately transformed and the second series also starts with a dc coefficient. As a result, the coefficients are transmitted as much as possible in their order of significance. This particularly produces the largest possible clusters of zero value coefficients. Such clusters are transmitted as one compact run-length code so that an effective bit rate reduction is achieved, also for moving pictures.
Abstract:
Short range communication systems and techniques are described. In an implementation an interrogator held near a person interrogates multiple transponders and receives information separately from the transponders. The interrogator and/or the transponders may be held in an article of clothing or in a personal effect of the person. The transponders may transmit identifying information and/or information associated with the states of the articles of clothing or personal effects of the person. Such a system enables the clothes worn by a person to communicate with a plurality of items and obtain useful information. In addition, a network system may be configured so that any particular transponder may communicate with another transponder or group of transponders of other locales to activate functions, cause actions or otherwise share data and/or information.
Abstract:
The invention relates to a video coding method based on an adaptive frame/field encoding mode. In order to avoid an impairment of the image quality and of the compression efficiency when a video sequence comprises a lot of motion or on the contrary quasi-motionless images, an improved real time double pass encoding scheme is proposed: during the first pass, no video stream is generated, but statistical results are computed and then provided to the second pass in order to optimize during said second pass the bit rate allocation and the buffer management. This improved double pass encoding method leads to an increase of the compression efficiency of about 10%.
Abstract:
The apparatus comprises a processor (15) which has specialized high-speed link terminals intended for the network communication with another processor linked to a rewritable application program memory (26) and includes means for updating this memory. The apparatus includes a connector (30) linked to said high-speed terminals and enabling the communication to the exterior.
Abstract:
A method of manufacturing a thin film transistor (TFT) is disclosed comprising source and drain electrodes joined by a semiconductor channel layer, a gate insulating layer formed from at least two sublayers and a gate electrode. The method comprising the steps of forming the gate insulating layer by depositing a thin film sublayer using a thin film technique; and depositing a printed sublayer by printing, wherein the thin film sublayer is located adjacent the semiconductor channel layer. The TFT may be a top gate TFT wherein the thin film sublayer is formed on the semiconductor channel layer, and wherein the printed sublayer is formed over the thin film sublayer. Alternatively, the TFT may be a bottom gate TFT wherein the printed sublayer is formed over the gate electrode; wherein the thin film sublayer is formed over the printed sublayer, and wherein the semiconductor channel layer is formed on the thin film sublayer.
Abstract:
In a speech transmission system, an input speech signal is applied to a speech encoder (12, 36) for encoding the input speech signal. The encoded speech signal is transmitted via a communication channel (10) to a speech decoder (30, 48). In order to improve the performance of the transmission system in the presence of background noise, it is proposed to introduce background noise dependent processing elements in the speech encoder (12, 36) and/or in the speech decoder (30, 48) In a first embodiment of the invention, the parameters of the perceptual weighting filter (124) in the speech encoder (12, 36) are derived by calculating linear prediction coefficients (null) from a speech signal which is processed by means of a high-pass filter (82). In a second embodiment of the invention, an adaptive post filter (150) in a speech decoder (30, 48) is by-passed when the noise level exceeds a threshold value.
Abstract:
An encoding apparatus is provided for encoding a wideband digital signal, comprising an input (1) for receiving the wideband digital signal, a splitter unit (3) for splitting the wideband digital signal into a number of M sub signals and a formatting unit (7) for assembling digital information including said data reduced sub signals into a digital output signal having a format suitable for transmission or storage. During a repeated encoding and decoding of a wideband digital signal in a subband encoding/decoding system or a transform encoding/decoding system, signal degradation may occur. In order to avoid this, the apparatus further comprises a variable delay unit (20) coupled between the input (1) and the splitter unit (3), for realizing a delay, the length of which is controlled by a control signal, and a control signal generator unit (24) for generating said control signal.