Abstract:
A wireless device, such as a user equipment device (UE), and a base station are disclosed, which may communicate with more efficient use of dynamic transmit time interval durations to enable a faster and more efficient ramp up of TCP communications to a higher or maximum throughput. The UE may communicate uplink or downlink communications with the base station according to a first shorter TTI duration for a first period of time. After the first period of time, the UE may communicate uplink or downlink communications to the base station according to a second longer TTI duration. For the case of uplink communications, the UE may be configured to increase a congestion window size after each acknowledgement of an uplink communication received by the base station during the first period of time. For the case of downlink communications, the base station may be configured to increase a congestion window size after each acknowledgement of a downlink communication received by the UE during the first period of time.
Abstract:
Apparatus and methods for managing use of radio frequency channels in unlicensed radio frequency bands by a wireless communication device in communication with a cellular wireless network are disclosed. The wireless communication device obtains, from an eNodeB of the wireless network, one or more access network discovery and selection function (ANDSF) policies that include rules for mobility of the wireless communication device and offloading of traffic for the wireless communication device to radio frequency channels in an unlicensed radio frequency band. The wireless communication device determines when at least one radio frequency channel in the unlicensed radio frequency band is available for offloading traffic, for network selection, for network re-selection, or for a supplemental connection via carrier aggregation based on the ANDSF policies, measured interference levels, and/or loading information provided by the eNodeB.
Abstract:
Mobile devices, base stations, and/or relay stations may implement methods for decreasing required guard bands while also minimizing Adjacent Channel Leakage Ratio, when multiple mobile devices communicate over different respective adjacent specified frequency bands. For communications over at least one specified frequency band of the different respective adjacent frequency bands, a first bandwidth of uplink communications and/or a second bandwidth of downlink communications may be adjusted to differ from each other, and/or a communications bandwidth within the specified frequency band may be adjusted to be of a first size during a first portion of a specified data transmission period and to be of a second size during a second portion of the specified data transmission period, when at least some of the communications over the specified frequency band take place at frequencies adjacent to frequencies at which at least some of the communications take place over another specified frequency band.
Abstract:
Apparatus and methods for estimating a location of a wireless device in communication with a wireless network, such as an LTE/LTE-A network, based at least in part on WLAN/WPAN AP measurements and/or barometric measurements are disclosed. The wireless device responds to a location capability inquiry from the wireless network by providing a response that indicates the wireless device is configurable to estimate its location based on WLAN/WPAN AP and/or barometric measurements. The wireless network sends WLAN/WPAN AP and/or barometric reference information to the wireless device to assist in estimating its location. The wireless device measures one or more WLAN/WPAN APs, and the wireless device uses the WLAN/WPAN AP and/or barometric measurements to estimate its location. In some embodiments, GPS/GNSS information is used in conjunction with WLAN/WPAN AP and/or barometric measurements to estimate the location of the wireless device.
Abstract:
Apparatus and methods for estimating a location of a wireless device in communication with a wireless network, such as a UMTS network, based at least in part on WLAN/WPAN AP measurements and/or barometric measurements are disclosed. The wireless device responds to a location capability inquiry from the wireless network by providing a response that indicates the wireless device is configurable to estimate its location based on WLAN/WPAN AP and/or barometric measurements. The wireless network sends WLAN/WPAN AP and/or barometric reference information to the wireless device to assist in estimating its location. The wireless device measures one or more WLAN/WPAN APs, and the wireless device uses the WLAN/WPAN AP and/or barometric measurements to estimate its location. In some embodiments, GPS/GNSS information is used in conjunction with WLAN/WPAN AP and/or barometric measurements to estimate the location of the wireless device.
Abstract:
This disclosure relates to use of WLAN virtual interfaces. According to one embodiment, a wireless device may be capable of using a WLAN chipset for user initiated WLAN communication and for cellular offloading WLAN communication. A separate WLAN virtual interface may be established for each type of WLAN communication, including a first WLAN virtual interface between the WLAN chipset and a WLAN connectivity manager executing on an application processor of the wireless device and a second WLAN virtual interface between the WLAN chipset and a cellular connectivity manager executing on the application processor. The virtual interfaces may each use a different IP address, and may either multiplex data onto a shared RF chain in a time-sharing manner or each be provided with their own RF chain to perform WLAN communication.
Abstract:
This disclosure relates to use of WLAN virtual interfaces. According to one embodiment, a wireless device may be capable of using a WLAN chipset for user initiated WLAN communication and for cellular offloading WLAN communication. A separate WLAN virtual interface may be established for each type of WLAN communication, including a first WLAN virtual interface between the WLAN chipset and a WLAN connectivity manager executing on an application processor of the wireless device and a second WLAN virtual interface between the WLAN chipset and a cellular connectivity manager executing on the application processor. The virtual interfaces may each use a different IP address, and may either multiplex data onto a shared RF chain in a time-sharing manner or each be provided with their own RF chain to perform WLAN communication.
Abstract:
Techniques are disclosed relating to a mobile device that communicates over short-range networks and long-range networks. In various embodiments, a mobile device includes one or more radios configured to communicate using a plurality of radio access technologies (RATs) including a cellular RAT and a short-range RAT. The mobile device may establish a first connection and a second connection with a network such that the first connection uses the short-range RAT and the second connection uses the cellular RAT. The mobile may collect information about the second connection and communicate the collected information to the network over the first connection. In some embodiments, the information includes a base station identifier, an MCC, an MNC, the cellular RAT and a cellular information age indicating the time since the information about the second connection was collected by the UE.
Abstract:
End-to-end delay adaptation in conjunction with connected discontinuous reception (C-DRX) mode communication during cellular voice calls. A Voice over LTE (VoLTE) call may be established between a first wireless user equipment (UE) device and a second UE. End-to-end delay between real-time transport protocol (RTP) layers of the first UE and the second UE for the VoLTE call may be estimated. The end-to-end delay may be compared with one or more thresholds A C-DRX cycle length for the VoLTE call may be modified based on comparing the end-to-end delay with the one or more thresholds.
Abstract:
Selecting a physical channel for cellular communication based on application traffic pattern. A radio bearer may be established between a wireless device and a base station. A physical downlink channel may be selected for the radio bearer. The physical downlink channel may be selected based on an application traffic pattern of an application associated with the radio bearer. In some instances, a physical uplink channel may also be selected based on an application traffic pattern of an application associated with the radio bearer.