Abstract:
A sealing assembly includes a door and a seal. The door includes a flexible body that is movable between an open position and a closed position. The seal is movable between an engaged position in which the seal is positioned in engagement with a portion of the flexible body when the flexible body is in the closed position and a disengaged position in which the seal moves away from the portion of the flexible body as the flexible body moves from the closed position to the open position such that the flexible body is spaced from the seal to minimize frictional engagement with the seal.
Abstract:
A resettable sensor assembly includes a housing having a longitudinal axis and defining a cavity therein. The assembly includes a divider disposed within the cavity and in contact with the housing, at least one electrical contact disposed within the cavity and extending through the divider, and a pin reversibly translatable within the cavity along the axis. The assembly includes at least one actuator element disposed within the cavity and abutting the housing. The element is configured for translating the pin along the axis between a first position wherein the pin contacts the electrical contact and a second position wherein the pin is spaced apart from the electrical contact. The actuator element is formed from a shape memory alloy that is transitionable between an austenite crystallographic phase and a martensite crystallographic phase in response to a thermal activation signal to thereby translate the pin between the first and second positions.
Abstract:
A device for cycling a component between a first condition and a second condition includes an element and a reset apparatus connected to and driven by the element. The element is formed from a shape memory alloy, wherein the alloy is transitionable between a martensite crystallographic phase and an austenite crystallographic phase in response to a thermal energy source. The apparatus is actuatable by the element from an initial state in which the alloy has the martensite phase and the component is in the first condition, to an actuated state in which the alloy has the austenite phase and the component is in the second condition. The apparatus is resettable from the actuated state to a reset state in which the alloy transitions from the austenite to the martensite phase while the component is in the first condition, and further resettable from the reset state to the initial state.
Abstract:
A vent assembly is disposed within an interior space of a vehicle for opening and closing fluid communication between the interior space and an exterior of the vehicle. The vent assembly includes a housing defining a plurality of openings and a plurality of vanes disposed in the openings. An actuator mechanism moves the vanes between an open position and a closed position, and includes a shaped memory alloy (SMA) member for actuating the vanes between the open and closed positions. The SMA member is activated when a hatch of the vehicle is opened to move the vanes into the open position and thereby open fluid communication between the interior space and the exterior to alleviate excessive air pressure buildup during closure of the hatch.
Abstract:
An adjustable bumper, adapted for supporting closure panels on a vehicle, is described. The bumper incorporates a shape memory polymer portion, which may be readily permanently reshaped by the steps of: heating above its transition temperature, deforming by application of a load, and cooling, while still under load, below its transition temperature. This behavior is exploited to enable adjustment of the adjustable bumper so that it may provide the desired closure panel support while accommodating vehicle to vehicle variations in the fit of the closure panel and the vehicle body.
Abstract:
A lockable latching device includes a body defining a cavity therein and having a central longitudinal axis, and a plunger disposed within the cavity. The plunger has a first end and a second end and is translatable with respect to the body along the axis between an open position and a closed position. The device also includes an annular rotator spaced apart from the body along the axis and configured for rotating the plunger about the axis. The device includes an annular latch abutting the rotator that is transitionable between an unlocked state and a locked state. The device also includes an element attached to the latch and formed from a shape memory alloy that is transitionable between an austenite crystallographic phase and a martensite crystallographic phase in response to an activation signal to thereby transition the latch from the locked state to the unlocked state.
Abstract:
A drain plug assembly that has particular application for sealing a drain hole in a battery compartment on a vehicle. The plug assembly includes a plug that inserted into the drain hole and a cover covering the plug. The plug assembly also includes a first shape memory alloy (SMA) wire having ends attached to the cover and a middle portion attached to the plug and a second SMA wire having ends attached to the cover and a middle portion attached to the plug. The plug assembly also includes a mechanical hinge attached to the plug and the cover, wherein the first SMA wire is actuated to flip the hinge to position the plug in a closed position to close the drain hole and the second SMA wire is actuated to flip the hinge to position the plug in an open position to open the drain hole.
Abstract:
A method includes assembling a first latching device and a second latching device. The first latching device includes a first support housing and a first sliding assembly. The first sliding assembly is selectively movable, relative to the first support housing, between a latched position and an unlatched position. The second latching device includes a second support housing, a second sliding assembly, and an actuating mechanism. The second support housing is substantially identical to the first support housing. The second sliding assembly is selectively movable, relative to the second support housing, between a latched position and an unlatched position. The actuating mechanism is operatively disposed in the second support housing and is configured to selectively maintain the sliding assembly in the latched position until the actuating mechanism is selectively actuated. The first latching device does not include the actuating mechanism.
Abstract:
An energy harvesting system includes a heat engine and a component. The heat engine includes a belt, a first member, and a second member. The belt includes a strip of material and at least one wire at least partially embedded longitudinally in the strip of material. The wire includes a shape memory alloy material. A localized region of the at least one wire is configured to change crystallographic phase between martensite and austenite and either contract or expand longitudinally in response to exposure to a first temperature or a second temperature such that the strip of material corresponding to the localized region also contracts or expands. The first member is operatively connected to the belt and moves with the belt in response to the expansion or contraction of the belt. The component is operatively connected to the first member such that movement of the first member drives the component.