Abstract:
A method and structure are provided for implementing a conformal coating composition for high current applications. A copper particulate filler material layer is added over a standard conformal coating layer of a circuit component. The added layer aids in dispersing the heat away from the circuit component. The copper particulate filler material reacts with sulfur bearing gasses and prevents corrosive agents from reacting with the underlying component metallurgy, thus extending the product life.
Abstract:
A carbene-coated metal foil is produced by applying an N-heterocyclic carbene (NHC) compound to one or more surfaces of a metal foil (e.g., an electrodeposited copper foil having a surface that is smooth and non-oxidized). The NHC compound contains a matrix-reactive pendant group that includes at least one of a vinyl-, allyl-, acrylic-, methacrylic-, styrenic-, amine-, amide- and epoxy-containing moiety capable of reacting with a base polymer (e.g., a vinyl-containing resin such as a polyphenylene oxide/triallyl-isocyanurate (PPO/TAIC) composition). The NHC compound may be synthesized by, for example, reacting a halogenated imidazolium salt (e.g., 1,3-bis(4-bromo-2,6-dimethylphenyl)-4,5-dihydro-1H-imidazol-3-ium chloride) and an organostannane having a vinyl-containing moiety (e.g., tributyl(vinyl)stannane) in the presence of a palladium catalyst. In some embodiments, an enhanced substrate for a printed circuit board (PCB) is produced by laminating the carbene-coated metal foil to a substrate that includes glass fiber impregnated with the base polymer.
Abstract:
In an approach to updating a prediction model, where the prediction model is used for time series data, a computer selects a first prediction time window in an order from a plurality of prediction time windows associated with the prediction model, and predicts one or more predicted values of the time series data at a plurality of time points within the first prediction time window. The computer calculates a prediction error associated with the first prediction time window based on the one or more predicted values and one or more actual measured values of the time series data at the plurality of time points. The computer determines whether the prediction error is larger than a predefined error threshold associated with the first prediction time window, and in response to determining the prediction error is larger than the predefined error threshold, provides a notification of updating the prediction model.
Abstract:
A printing system for indicating print media quality to printer users includes a printing assembly configured to route print media along a pathway for printing. In an example, the system includes, but is not limited to, a thermal printer having a thermal print head for printing onto paper. The system also includes a light meter configured to detect light reflected from the print media, such as the paper. The light meter also measures a characteristic of the detected light. An indicator is coupled to the light meter, and configured to present a quality level of the print media to a user based on the measured characteristic of the detected light.
Abstract:
Pre-treated water cooling hoses and a method for implementing pretreatment of water cooling hoses for increased reliability are provided. Pretreatment of the water cooling hoses includes attaching the water cooling hose to a water cooling system, filling the water cooling system with a high concentration corrosion inhibitor solution, and running the system for an extended time to saturate the attached hose with the high concentration corrosion inhibitor.
Abstract:
Computer technology for protecting data security in a computerized system for recommending content to users where, a processing unit generates an identifier for a first data record relating to a user device based on a first machine learning model. Then, the processing unit sends the identifier to a service provider, and the service provider uses the identifier to determine one or more contents to be sent to the user device. Creating and using a decision tree machine learning (ML) model and a cluster ML model with training records and a transformed records.
Abstract:
A thermal interface material (TIM) includes a modified release layer having an organosilane-coated surface covalently bound to a TIM formulation layer. The modified release layer may be formed by applying an organosilane (e.g., vinyltriethoxysilane) to the surface of a thermally conductive release layer (e.g., aluminum foil). The organosilane reacts with hydroxyl groups on the surface of the thermally conductive release layer. The TIM formulation layer may be formed by applying a TIM formulation (e.g., a graphite TIM formulation) containing an unsaturated monomer (e.g., methyl acrylate) to the organosilane-coated surface of the modified release layer, and then curing the TIM formulation so that the unsaturated monomer of the TIM formulation reacts with the organosilane-coated surface of the modified release layer.
Abstract:
In an embodiment, a plug formulation includes a mixture of a first part of a two-part epoxy system and artificial platelets formed from a polymeric material that expands upon exposure to ultraviolet (UV) light, moisture, or heat, wherein a portion of the first part of the two-part epoxy system is covalently bonded to a portion of the artificial platelets. In another embodiment, a plug formulation includes a mixture of a first part of a two-part epoxy system, an acrylate monomer, and artificial platelets formed from a polymeric material that expands upon exposure to ultraviolet (UV) light, moisture, or heat, wherein a portion of the first part of the two-part epoxy system is covalently bonded to a portion of the artificial platelets.